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TORSION OF A NON-CIRCULAR BAR

Jan Franc̊u*, Petra Nováčková*, Přemysl Jańıček**

The contribution deals with strain-stress analysis of torsion of a non-circular bar.
Mathematical model is exactly derived and solutions are introduced and visualized
for cases of triangular, rectangular and some other profiles.

Keywords : torsion of non-circular bar, Airy stress function, rectangular profile

1. Introduction

Analysis of properties, states and behavior of technical objects is an important task
of Engineering Mechanics. Strain-stress analysis of solid bodies ranks to these problems.
Continuum mechanics and especially elasticity theory provides tools for this analysis.

The strain-stress analysis passed through its development, analytic approaches predom-
inating in the past are at present replaced by numerical tools as Finite Element Method,
Finite Volume Method, Boundary Element Method etc. In comparison to the classical meth-
ods the numerical methods are universal in sense that their applicability is independent of
geometry of the body, material characteristics, etc. This may indicate that the period of
analytical elasticity ended. But it is not the case. There are reasons to keep on using both
the analytical methods and the numerical methods in the strain-stress analysis.

The numerical methods (e.g. FEM) enable to compute numerical values of strain-stress
state of the particular material in particular points under particular loads. On the other
hand they provide no formulas which can be used for predicting the change of the values
under changing the load, size, stiffness etc. The analytical methods yielding formulas enable
this prediction. Unfortunately they can be applied only to special shapes of bodies and
loads.

Also interpreting results obtained by numerical computations requires basic knowledge
of mathematical elasticity, which causes troubles to many engineers in practice and leads to
doubts whether the results obtained by numerical methods are correct. Analytical theory
of elasticity can be a tool for verification of the numerical results.

This knowledge, hidden in formulas obtained by analytical methods, is a suitable tool for
finding dangerous places of loaded bodies. For example torsion of a bar with cross-section
that can be split into various rectangles. Analysis of shear stress of the particular rectangles
enables to deduce the following results: in the case of open profile the maximal shear stress
appears in rectangles with maximal thickness, in the case of closed profile it appears in
the rectangles with minimal thickness. These results can be obtained also by numerical
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methods, but it requires computations of many variants of the profile.

We believe that the introduced facts sufficiently justify publishing a contribution dealing
with an analytic method in the present period of numerical computations.

Torsion of the elastic bars is studied in several textbooks, see e.g. [3], [4], [2], [8], but the
results are mostly introduced without proofs or circular cross-section only is considered, e.g.
in monograph [1]. In this circular case the cross-sections remains planar, but in case of
non-circular bar, the real cross-sections are deflected from the planar shape. The equation
for a non-circular bar is derived correctly in [7], but no solutions for particular profiles are
introduced.

The aim of this contribution is to fill in this gap: torsion of a bar with constant profile
is analyzed using the Airy stress function. Complete exact derivation of the mathematical
model is introduced. The second part contains explicit solutions for some non-circular
profiles: starting with profiles given by polynomials. The case of rectangular profile is
solved by means of Fourier series. The solutions (Airy stress function, modulus of sheer
stress and deflexion) are visualized in pictures by their level curves drawn by the system
MAPLE. The case of hyperbolic section profile seems to be new.

Let us mention an older monograph [5] published in 1953 by Anselm Kovář in Czech. It
starts with history of the torsion theory: the first solution of the non-circular case in 1836
by L. Navier assumed planar cross-sections which led to incorrect results: the stress attains
its maximum in the most away points from the center of the cross-section. Using continuum
mechanics B. Saint-Venant 1847 published the correct solution. The Kovař’s monograph
contains both technical and general mathematical torsion theory. It contains solution for
several profiles: rectangle (by four methods), equilateral triangle, regular hexagon, octagon
and other profiles, in [6] even the regular pentagon is solved; but the results are not obtained
by the Airy stress method.

2. Theory

We shall consider an isotropic homogeneous long prismatic bar. According to the tradi-
tion in mechanics the axis of the bar coincides with x-axis, the cross-section denoted by Ω
is a set in the y, z plane, see Fig. 1. The bar is fixed at x = 0 base, the opposite base x = �

is twisted by angle � α. We adopt the following assumptions :

– the cross-sections in the y, z-plane rotates as a rigid body. In the case of a non-circular
shape Ω, the cross-section is not planar, it is deflected in the x-direction,

– the deflection and the twist rate α is constant along the whole length of the bar. Thus
the problem is reduced to a two-dimensional one.

Fig.1: Orientation of the axis
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2.1. Strain analysis

Let us assume the following geometrical behavior : According to the Saint-Venant hypoth-
esis, the displacements u, v, w in directions x, y, z under these assumptions can be written
in the form

u = α ϕ(y, z) ,

v = −αx z ,

w = αx y ,

(1)

where ϕ(y, z) is an unknown function describing the deflection. It is supposed to be dif-
ferentiable. Simple computation yields the corresponding strain (small deformation) tensor
e = {eij}

exx =
∂u

∂x
= 0 , eyy =

∂v

∂y
= 0 , ezz =

∂w

∂z
= 0 ,

exy =
1
2

(
∂u

∂y
+

∂v

∂x

)
=

1
2

α

(
∂ϕ

∂y
− z

)
,

exz =
1
2

(
∂u

∂z
+

∂w

∂x

)
=

1
2

α

(
∂ϕ

∂z
+ y

)
,

eyz =
1
2

(
∂v

∂z
+

∂w

∂y

)
=

1
2

(−α x + α x) = 0 .

(2)

Simple computation yields

∂exz

∂y
− ∂exy

∂z
=

α

2

(
∂2ϕ

∂y ∂z
+ 1 − ∂2ϕ

∂z ∂y
+ 1

)
= α . (3)

2.2. Stress analysis

The Hooke’s law of linear elasticity is written in the form:

τij = λ δij(exx + eyy + ezz) + 2 μ eij , (4)

where Kronecker’s delta δij = 1 for i = j, otherwise δij = 0, and λ, μ are the Lamé constants.
The sheer modulus μ is also often denoted by G. In our case the trace exx + eyy + ezz equals
to zero. Substituting (2) into (4) we obtain the components of the stress tensor τ = {τij}

τxx = τyy = τzz = τyz = 0 ,

τxy = 2 μ exy = α μ

(
∂ϕ

∂y
− z

)
,

τxz = 2 μ exz = α μ

(
∂ϕ

∂z
+ y

)
.

(5)

The equilibrium equations
∑

j ∂jτij = fi with zero forces fi reduce to

∂τxy

∂y
+

∂τxz

∂z
= 0 ,

∂τxy

∂x
= 0 ,

∂τxz

∂x
= 0 . (6)

For a simply connected domain Ω the equalities in (6) yield existence of a function Φ(y, z)
independent of x such that the only nonzero stress components τxy and τxz given by

τxy = α μ
∂Φ(y, z)

∂z
, τxz = −α μ

∂Φ(y, z)
∂y

(7)



48 Franc̊u J. et al.: Torsion of a Non-Circular Bar

satisfy all the equilibrium equalities (6). Let us express the components exy and exz using (5)
by means of Φ

exy =
1

2 μ
τxy =

α

2
∂Φ
∂z

, exz =
1

2 μ
τxz = −α

2
∂Φ
∂y

(8)

and using (3) we obtain

∂exz

∂y
− ∂exy

∂z
= −α

2

(
∂2Φ
∂y2

+
∂2Φ
∂z2

)
= α .

The last equality can be rewritten into an inhomogeneous second order partial differential
equation

ΔΦ ≡ ∂2Φ
∂y2

+
∂2Φ
∂z2

= −2. (9)

2.3. Boundary condition

The equation has to be completed by boundary conditions. We assume that the boun-
dary Γ is a piecewise differentiable simple curve and can be expressed by equations with
parameter s being the arc length of the curve Γ. The curve is oriented such that the domain
is on the left-hand side when the parametr s grows, see Fig. 2. Except for the ‘corners’ the
unit outer vector n = (ny, nz) normal to domain Ω exists on the boundary curve Γ.

Fig.2: Unit vectors normal and tangent to Γ

Since zero surface forces are considered, on the boundary Γ the traction vector T =
= (Tx, Ty, Tz) has zero components. Inserting τxy, τxz from (7) to equality Tx = 0 we obtain

Tx = τxy ny + τxz nz = μ α

(
∂Φ
∂z

ny − ∂Φ
∂y

nz

)
= 0 . (10)

But (−nz, ny) is the tangent vector to boundary Γ of domain Ω, see Fig. 2. Thus (10)
implies that the tangent derivative of Φ equals to zero, and therefore Φ is constant along
each component of the boundary Γ. For a profile with no holes the boundary Γ is connected
and we can choose the constant to be zero. Thus we have arrived to the boundary value
problem for the so-called Airy stress function Φ(y, z)

ΔΦ ≡ ∂2Φ
∂y2

+
∂2Φ
∂z2

= −2 in Ω ,

Φ = 0 on Γ .

If the profile Ω has holes (the so-called multi-connected domain Ω) then the boundary Γ
is not connected. Besides the outer curve Γ0 the boundary Γ consists of one or more
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components Γi. Then the stress function can attain different values on each Γi, i.e. there
exist constants ci such that Φ = ci on Γi.

2.4. Torque, section moment and stress

Let us compute the torque M of the twisted bar. It can be computed from the stress
tensor τ as follows

M =
∫∫
Ω

(−τxy z + τxz y) dy dz .

Inserting from (7) we obtain

M = −α μ

∫∫
Ω

(
∂Φ
∂z

z +
∂Φ
∂y

y

)
dy dz .

We shall use the so-called integration by parts in the plane with z-derivative∫∫
Ω

∂f

∂z
g dy dz =

∫
Γ

f g nz ds −
∫∫
Ω

f
∂g

∂z
dy dz

and the similar formula for the y-derivative (both formulas follow from the Gauss-Ostro-
gradskii theorem). Since Φ = 0 on the boundary Γ (in the case of the profile without holes)
we get

M = 2 α μ

∫∫
Ω

Φ dy dz .

We obtained dependence of the torque M on the twisting rate α

M = α μ J , (12)

where the moment of the cross-section J is given by

J = 2
∫∫
Ω

Φ(y, z) dy dz . (13)

In case of a profile Ω = Ω0 − ∪i Ωi with holes Ωi putting Φ = 0 on the outer boundary Γ0

and Φ = ci on the boundary curves Γi of holes then

J = 2
∫∫
Ω

Φ dy dz + 2
∑

i

ci |Ωi| , (14)

where |Ωi| is volume of the hole Ωi.

How to find maximum stress? In our case the modulus of the stress force T (n) =
= τxy ny + τxz nz is |T | = [τ2

xy + τ2
xz]1/2. If the cross-section Ω is a convex set and function Φ

is zero on Γ, then the function Φ is strictly concave and its y (or z) derivative is decreasing
in y (or z) direction. Thus the derivatives cannot attain their extremes inside Ω. Since the
tangent derivative of Φ is zero at Γ, the modulus equals the normal derivative of Φ. Thus
the maximum can be found on the boundary Γ, at the boundary point which is the nearest
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to the point of maximum value of Φ, since there is the biggest slope of Φ. The maximum
value of the stress |T |max which is important in engineering practice is often expressed in the
form |T |max = M/W , where M is the torque and W is a quantity called the twist section
modulus. It is defined

W =
M

|T |max
=

α μ J

|T |max
. (15)

and for particular shapes is expressed by means of section dimensions and a shape constant.

2.5. Summary of the results

Let us summarize the results. In case of the profile without holes we compute the Airy
stress function Φ(y, z) as the solution of the boundary value problem (11). Then (13) yields
the torsion constant J and from (12) we get dependence of the twist rate α on the torque M .
The non-zero components τxy, τxz of the stress tensor are given by (7).

To obtain the displacements we need to compute the deflexion function ϕ. Combining (8)
and (5) we obtain

∂ϕ

∂y
=

∂Φ
∂z

+ z ,
∂ϕ

∂z
= −∂Φ

∂y
− y . (16)

It is the problem of finding a potential ϕ(y, z) from its differential

dϕ = f dy + g dz .

Easy calculation verifies that due to equation (9) the compatibility condition ∂f/∂z−
− ∂g/∂y = 0 is satisfied, thus the potential ϕ exists up to an additive constant. To ob-
tain unique deflection function ϕ we add zero integral mean condition∫∫

Ω

ϕ(y, z) = 0 . (17)

Then the displacements u, v and w are given by (1).

Let us remark the dimensions of the quantities. The displacements u, v, w and deflection
function ϕ are in meters [m], strain tensor e is dimensionless, twist rate α is in [m−1], Airy
stress function Φ is in [m2], moment of the cross-section J in [m4], the twist section modulus
W in [m3], the sheer modulus μ, the stress tensor τ , the stress vector T in [Nm−2] and the
torque M in [Nm].

3. Examples

The crucial point of the computation is solving the boundary value problem (11). We
start with polynomial stress functions. Let a polynomial P (y, z) satisfy

ΔP ≡ ∂2P

∂y2
+

∂2P

∂z2
= −2 . (18)

If the contour line Γ = {(y, z) ∈ �
2 |Φ(y, z) = 0} bounds a bounded non-empty domain Ω,

then we obtained the solution of the boundary value problem (11) on a cross-section Ω.
Since in case of convex Ω the polynomial P is strictly concave, also the problem is solved
also for cross-sections Ω given by P (y, z) > c for positive constants c > 0.
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Considering general second order polynomial

P2(y, z) = a20 y2 + a11 yz + a02 z2 + a10 y + a01 z + a00

we obtain ΔP2(y, z) = 2 a20 + 2 a02, which yields the condition

a20 + a02 = −1 . (19)

Thus any polynomial P2 satisfying the condition (19) solves the equation (18). In this
case the only bounded cross-sections are ellipses including the circle. The case of ellipse
cross-sections will be solved in Section 3.1.

Let us consider a third order polynomial

P3(y, z) = a30 y3 + a21 y2z + a12 y z2 + a03 z3 + P2(y, z) .

Simple computation yields

ΔP3 = 6 a30 y + 2 a21 z + 2 a12 y + 6 a03 z + 2 a20 + 2 a02 .

To obtain a solution of (18) we complete (19) by two additional conditions

3 a30 + a12 = 0 , a21 + 3 a03 = 0 .

Thus for any c1, c2 ∈ � and any polynomial P2 satisfying (19) the polynomial

P3(y, z) = c1 y (y2 − 3 z2) + c2 z (3 y2 − z2) + P2(y, z)

is a solution to (18). The only bounded cross-sections determined by third order poly-
nomials are hyperbolic segments studied in Section 3.4, and their limit cases equilateral
triangles studied in Section 3.3. Besides these cross-sections Ω also their subsets Ωc given
by {[y, z] |P3(y, z) > c for c > 0 are solved.

In the case of a forth order polynomial

P4(y, z) = a40 y4 + a31 y3z + a22 y2z2 + a13 y z3 + a04 y4 + P3(y, z)

a similar computation yields additional conditions

6 a40 + a22 = 0, a31 + a13 = 0, a22 + 6 a04 = 0

to the previous ones. Thus for any c1, c2, c3, c4 ∈ � and any second order polynomial P2(y, z)
satisfying (19) the fourth order polynomial

P4(x, y) = c1 (y4−6 y2z2+z4) + c2 y z (y2−z2) + c3 y (y2−3 z2) + c4 z (3 y2−z2) + P2(y, z)

is a solution to the problem (18). We only need to check whether the polynom yields
a bounded cross-section. In this way we can proceed to polynomials of higher orders. On
the other hand the question is whether the obtained cross-sections Ω are bounded and ‘useful’
in engineering practice.
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3.1. Elliptic profile

The only bounded Ω given by second order polynomials are ellipses. Let us consider the
ellipse Γ with semi axes a ≥ b > 0 in the standard position

y2

a2
+

z2

b2
= 1 .

The corresponding stress function Φ

Φ(y, z) = k

(
y2

a2
+

z2

b2
− 1

)

clearly satisfies Φ = 0 on Γ and condition ΔΦ = −2 yields value of the constant k =
= −(a−2 + b−2)−1. Thus the solution Φ of the problem (11) is

Φ(y, z) =
a2 b2

a2 + b2

(
1 − y2

a2
− z2

b2

)
. (20)

The obtained Airy stress function Φ is plotted by its level curves on Fig. 3a. The moment J

of the cross-section can be computed using (13). Using the elliptic coordinates y = a ρ cosϕ,
z = b ρ sin ϕ with Jacobian a b ρ we obtain

J = 2
∫∫
Ω

Φ(y, z) dy dz = 4 π
a3 b3

a2 + b2

1∫
0

(
1 − ρ2

)
ρ dρ = π

a3 b3

a2 + b2
.

In the case of circular cross section Ω with a = b = R we obtain J = π R4/2, see e.g. [1],
page 251.

From (5) we can see that the only non-zero components of the stress tensor are

τxy(y, z) = −2 αμ
a2 z

a2 + b2
, τxz(y, z) = 2 αμ

b2 y

a2 + b2
.

The modulus of the shear stress

|T | =
√

τ2
xy + τ2

xz = 2 αμ

√
a4 z2 + b4 y2

a2 + b2

is plotted on the figure by its level curves on Fig. 3b. It attains its maximum |T |max =
= 2 αμ a2 b/(a2 + b2) in points [0,±b]. The twist section modulus is W = π a b2/2.

Fig.3: Elliptic cross-section with μ = 1, α = 1, a = 1 and b = 1/2 : (a) stress
function Φ, (b) modulus of the shear stress T , (c) deflection function ϕ
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Concerning the deflection ϕ, in our case the equations (16) read

∂ϕ

∂y
= 2 z

a2

a2 + b2
+ z ,

∂ϕ

∂z
= −2 y

b2

a2 + b2
− y .

Standard computation with (17) yields the deflection function ϕ

ϕ(y, z) = −a2 − b2

a2 + b2
y z ,

which is also plotted on Fig. 3c.

3.2. Ring profile

Circular tubes are frequent elements used in engineering practice. Torsion of tubes can
be solved by means of the stress function from the previous section. Let Ω = {[y, z] | r2 <

< y2 + z2 < R2} be a ring with outer R and inner r radius; R > r > 0. Putting a = b = R

in (20) we obtain the Airy stress function

Φ(y, z) =
1
2

(R2 − y2 − z2) .

It takes value Φ = 0 on the outer boundary Γ0 = {[y, z] | y2 + z2 = R2} and value Φ =
= (R2 − r2)/2 on the inner boundary Γ1 = {[y, z] | y2 + z2 = r2}. The moment J of the
cross-section Ω can be computed using (14)

J = 2
∫∫
Ω

1
2

(R2 − y2 − z2) dy dz +
1
2

(R2 − r2)π r2 =
π

2
(R4 − r4) .

The sheer stress and the deflection follow directly from those of the elliptic case

τxy(y, z) = −αμ z , τxz(y, z) = α μ y , |T |max = α μ R , ϕ(y, z) = 0 .

The result functions are not interesting, thus they are not plotted.

3.3. Triangular profile

Third order polynomials enable to solve the case of a triangle profile. Let us consider
a general triangle Ω with one side being parallel to the axis y, i.e. a subset of the line z = −c.
Let the other sides lie on the lines z = a1 y + b1 and z = a2 y + b2, where a1, a2, b1, b2 ∈ �

and c > 0. Then the level curve P3(y, z) = 0 of the polynomial

P3(y, z) = k (a1 y + b1 − z) (a2 y + b2 − z) (z + c)

with k �= 0 bounds the triangle Ω. Simple calculation yields

ΔP3(y, z) = −2 k (a1 + a2) y + 2 k (a1 a2 + 3) z + 2 k (a1 a2 c − b1 − b2 + c) .

The right-hand side is constant if the coefficients by terms y and z are zero, i.e. if a1+a2 = 0
and a1 a2 +3 = 0, which implies a1 = −a2 = ±√

3. Thus the triangle Ω must be equilateral.
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Choosing b1 = b2 = b and b = 2 c the triangle has vertices [−√
3 c,−c], [

√
3 c,−c], [0, 2 c]

with its center of gravity in [0, 0].

The polynomial P3 is a solution to the problem (11) if the right-hand constant equals
to −2, i.e. −k (a1 a2 c − b1 − b2 + c) = k 6 c = 1 which yields k = (6 c)−1. We obtained the
Airy stress function

Φ(y, z) =
1
6 c

(√
3 y + 2 c − z

)(
−
√

3 y + 2 c − z
)

(z + c) . (21)

The moment J of the cross-section can be computed using (13) :

J = 2
1
6 c

2 c∫
−c

⎛
⎜⎝

(2 c−z)/
√

3∫
(z−2 c)/

√
3

Φ(y, z) dy

⎞
⎟⎠dz =

9
√

3
5

c4 .

The only non-zero components of the stress tensor are

τxy = −α μ
y2 − z2 + 2 c z

2 c
, τxz = α μ

y (z + c)
c

.

The modulus of the shear stress

|τ | =
√

τ2
xy + τ2

xz = α μ
1
2 c

√
(y2 − z2 + 2 c z)2 + 4 y2 (z + c)2

is plotted on the figure 4b, maximum values |T |max = α μ 3 c/2 are attained in the center
points of the sides, e.g. in [0,−c]. The twist section modulus is W = 6

√
3 c3/5. Concerning

the deflection ϕ, in our case the equations (16) read

∂ϕ

∂y
=

z2 − 2 z c − y2

2 c
+ z ,

∂ϕ

∂z
=

(z + c) y

c
− y .

Standard computation with (17) yields the deflection function ϕ

ϕ(y, z) =
1
6 c

y (3 z2 − y2) ,

which is also plotted on Fig. 4c.

Fig.4: Triangular cross-section with μ = 1, α = 1 and c = 1 : (a) stress function Φ,
(b) modulus of the shear stress τ , the maximum values of |T | occur in the
middle of the sides, (c) deflection of the cross-section
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3.4. Hyperbolic segment profile

The third order polynomials can solve also a special case of hyperbolic segment, i.e.
a bounded domain Ω limited by a line y = d > 0 parallel to z axis and a hyperbola
(y + c)2/a2 − z2/b2 = 1 in the y-shifted position with the center (−c, 0). The level curve
P3(x, y) = 0 of the polynomial

P3(y, z) = k

(
(y + c)2

a2
− z2

b2
− 1

)
(y − d)

bounds the domain Ω under consideration. Simple computation yields

ΔΦ(y, z) = 2 k
(3 b2 − a2) y + (a2 − b2) d + 2 c b2

a2 b2
.

The right-hand side is constant if 3 b2 − a2 = 0, i.e. a =
√

3 b. Let us remark that in this
case hyperbola asymptotes along with line y = d bound an equilateral triangle. Further the
right-hand side equals to −2, if k = −a2/(2 (d + c)) and the Airy stress function is

Φ(y, z) =

(
a2 − (y + c)2 + 3 z2

)
(y − d)

2 (c + d)
. (22)

With a convenient shift c the cross section Ω has its center of gravity in the origin. Since
analytic expression of such constant c is complicated (in practise it can be obtained only
numerically) we will leave it undetermined.

Fig.5: Hyperbolic cross-section with μ = 1, α = 1, a = 1, d = 2 : (a) stress function Φ,
(b) modulus of the shear stress τ , (c) deflection of the cross-section

Components of the stress tensor τ are

τxy = α μ
3 (y − d) z

c
, τxz = α μ

3 (y2 − z2) + 2 (2 c− d) y − a2 − 2 c d + c2

2 (c + d)
,
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the others are equal to zero. The modulus of the shear stress |T | is plotted in the figure 5b.
Its maximum value is either |T |max = α μ ((c+d)2−a2)/(2 (c+d)) in point [d, 0] if c+d ≥ √

2 a

or |T |max = α μ a2/(2 (c + d)) in point [−c, 0] if c + d ≤ √
2 a.

Concerning the deflection ϕ, in our case the equations (16) read

∂ϕ

∂y
=

(3 y − 2 d + c) z

c + d
,

∂ϕ

∂z
=

3 (y2 − z2) + 2 (c − 2 d) y − a2 − 2 c d + c2

2 (c + d)
.

It is not difficult to compute ϕ

ϕ(y, z) =
3 y2 z − z3 + 2 (c − 2 d) y z − (a2 + 2 c d − c2) z

2 (c + d)
,

where the integration constant is zero, since ϕ is odd in z and Ω is symmetric in z. Level
curves of ϕ are plotted on the figure 5c.

3.5. Non-polynomial stress functions

In general case the cross-section cannot be expressed as a level-curve of a polynomial
satisfying the equation (18). Even such case as rectangular parallelepiped cannot be solved
by polynomial stress function. Indeed, a centered rectangle with sides a and b is a level
curve of a polynomial

P4(y, z) = k
(
y − a

2

)(
y +

a

2

)(
z − b

2

)(
z +

b

2

)
,

but ΔP4(y, z) = k [2 (y2 + z2) + (a2 + b2)/2], which cannot equal to a nonzero constant.
Nevertheless, the problem can be solved by means of Fourier series.

3.6. Rectangular profile

Rectangular profiles are very important in engineering practice. We shall consider a rec-
tangle Ω = (−a/2, a/2)×(−b/2, b/2) with a ≥ b > 0. The Airy stress function will be looked
for in form of a double sum of functions having zero values at the boundary Γ. To this pur-
pose we choose products of cos(k π y/a) and cos(l π z/b) with positive odd integers k, l since
they are zero at Γ and have ‘good’ derivatives. Let us denote the set of positive odd integers
by �odd = {1, 3, 5, 7, . . .} and put

Φ(y, z) =
∑

k∈�odd

∑
l∈�odd

ckl cos
k π y

a
cos

l π z

b
.

with some coefficients ckl. The double sum is supposed to satisfy the equation (9). Inserting
Φ into the left hand side of (9) we obtain

ΔΦ(y, z) ≡
∑

k∈�odd

∑
l∈�odd

−ckl

[
k2 π2

a2
+

l2 π2

b2

]
cos

k π y

b
cos

l π z

h
= −2 . (23)

To find the coefficients ckl we express −2 by means of the series of the same type. Let us
expand the even function f(y) = 1 on (−a/2, a/2) into a cosine series

∑
k∈�odd

ck cos
k π y

a
.
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Since {cos(k π y/a), k ∈ � odd} form a complete orthogonal sequence in the Hilbert space of
even square integrable functions on (−a/2, a/2), the coefficients ck with odd k are given by

ck =
2
a
2

a/2∫
0

f(y) cos
k π y

a
dy =

4
a

[
a

k π
sin

k π y

a

]a/2

0

= (−1)
k−1
2

4
k π

.

In the same way we expand the function g(z) = 1 on (−b/2, b/2). Thus we obtained

∑
k∈�odd

(−1)
k−1
2

4
k π

cos
k π y

a
= 1 ,

∑
l∈�odd

(−1)
l−1
2

4
l π

cos
l π z

b
= 1 .

Multiplying product of both series with constant −2 we obtain equality

∑
k∈�odd

∑
l∈�odd

−2(−1)
k+l
2 −1 42

k l π2
cos

k π y

a
cos

l π z

b
= −2 . (24)

Since both series in (23) and (24) are of the same type and have the same sum, the cor-
responding coefficient must be equal. Comparing both series we obtain formula for the
coefficients ckl :

ckl = 2
42

k l π2
(−1)

k+l−2
2

[
k2π2

a2
+

l2π2

b2

]−1

=
25a2b2

π4

(−1)
k+l
2 −1

k l (k2 b2 + l2 a2)
.

Thus the Airy stress function equals to

Φ(y, z) =
25a2 b2

π4

∑
k∈�odd

∑
l∈�odd

(−1)
k+l
2 −1

k l (k2 b2 + l2 a2)
cos

k π y

a
cos

l π z

b
. (25)

We obtained the result in the form of an infinite series. Due to estimate∣∣∣∣ckl cos
k π y

a
cos

l π z

b

∣∣∣∣ ≤ |ckl| ≤ const.
1

k2 l2
,

the series converge uniformly, since
∑

k∈�odd

∑
l∈�odd

1/(k2 l2) equals to product of two series
(
∑

k∈�odd
1/k2)(

∑
k∈�odd

1/l2) which both have finite sum. Let us compute the moment J .
Since

a/2∫
−a/2

cos
(

k π y

a

)
dy =

2 a

k π
(−1)

k−1
2 ,

b/2∫
−b/2

cos
(

l π z

b

)
dz =

2 b

l π
(−1)

l−1
2

the formula (13) yields

J = 28 a3 b3

π6

∑
k∈�odd

∑
l∈�odd

1
k2 l2 (k2 b2 + l2 a2)

.

Let us denote the ratio r = a/b. Using a function K1(r) the relation can be rewritten to

J = K1

(a

b

)
a b3 ,
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r 1 1.5 2 3 4 5 6 8 10 ∞
K1(r) 0.141 0.196 0.229 0.263 0.281 0.291 0.298 0.307 0.312 1/3
K2(r) 0.208 0.231 0.246 0.267 0.282 0.292 0.299 0.307 0.313 1/3

Tab.1: Table with the numerical values of K1(r) and K2(r)

where the dimensionless function K1(r) depending on the ratio r is given by

K1(r) =
28

π6

∑
k∈�odd

∑
l∈�odd

r2

k2 l2 (k2 + r2 l2)
.

The values of K1(r) for some ratios r are in Table 1.

Relation (7) yields the nonzero components of the stress tensor

τxy(y, z) = α μ
25 a2 b

π3

∑
k∈�odd

∑
l∈�odd

(−1)
k+l
2

k (k2 b2 + l2 a2)
cos

k π y

a
sin

l π z

b
,

τxz(y, z) = −α μ
25 a b2

π3

∑
k∈�odd

∑
l∈�odd

(−1)
k+l
2

l (k2 b2 + l2 a2)
sin

k π y

a
cos

l π z

b
.

According to the remark in the end of Section 2, the maximum of the stress is in the middle
point [0,±b/2] of the longer side of the rectangle. From (7) simple computation yields

|T |max = α μ
25 a2

π3 b

∑
k∈�odd

∑
l∈�odd

(−1)
k−1
2

k (k2 + r2 l2)
.

Using a function K2(r) the relation can be rewritten to

|T |max = α μ a b2K2

(a

b

)
,

where the dimensionless function K2(r) depending on the ratio r = a/b and K1(r) is given
by

K2(r) = K1(r)
π3

25 r2

[ ∑
k∈�odd

∑
l∈�odd

(−1)
k−1
2

k (k2 + r2 l2)

]−1

.

Some numerical values of K2(r) are listed in the Table 1. In mechanics the |T |max is often
expressed in the form |T |max = M/W , where the section twisting moment W is given by
W = a b2K2(a/b).

Fig.6: Results for a rectangular profile with μ = 1, α = 1, a = 2 and b = 1 : (a) stress
function Φ, (b) modulus of the shear stress τ ; the maximum values of τ occur
in the middle of longer sides, (c) deflection of the cross-section
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The deflection function ϕ is given by its differential. Using (16) we obtain

ϕ(y, z) =
25 a3 b

π4

∑
k∈�odd

∑
l∈�odd

(−1)
k+l
2

k2 (k2 b2 + l2 a2)
sin

k π y

a
sin

l π z

b
+ y z,

its values are also plotted in the Figure 6c.

In case of more complicated profiles the analytic solution does not exist but the stress
function can be found numerically, e.g. by the finite element method.

4. Conclusion

In the first part the mathematical model of torsion of a non-circular prismatic bar was
built under the Saint-Venant hypothesis (1). All results were derived from well-known
mechanical laws as equilibrium equations (6) and Hooke’s law (4). The Section 3 provides
several examples. Exact solution is given for some profiles with polynomial boundary, the
sufficient conditions are derived. Classical examples like elliptic and triangular profiles are
included. In the end the most important case is studied: the solution of rectangular profile
is solved in the form of infinite series. The numerical values in Table 1 coincide with those
in [8], [5].

Let us mention the influence of choice of the coordinate origin. Shifting Ω by a vector
s = [ys, zs] to Ωs = {[y + ys, z + zs] | [y, z] ∈ Ω} we obtain the boundary value problem (11)
on Ωs. Its solution, the Airy stress function Φs is shifted function Φ, namely Φs(y, z) =
= Φ(y − ys, z − zs). Thus its shape is unchanged. Since the stress is derived from the Airy
stress function, also the stress tensor τ and stress vector T are shifted without change of the
shape, also the maximum stress is conserved.

The situation differs for the deflection function ϕ. It is a solution of the equation (16)
which contains coordinates y and z on the right hand side. Thus the deflection function
ϕ(y, z) depends on the shift, its shape changes with the shift s. Which deflection is correct?
The model is based on the Saint-Venant hypothesis (1) which describes the torsion around
the x axis, i.e. around the origin [y, z] = [0, 0]. If it is the center of gravity, then the
deformation given by (1) is acceptable. If the torsion axis (point [0, 0]) is not in the center
of gravity of the cross-section Ω, then according to the hypotheses (1) the centers of gravity
of the twisted bar lie on a helix which contradicts the behavior of the real material. Indeed,
in this case the momentum equilibria condition are not satisfied. In all examples the center
of rotation coincides with center of gravity of the cross-section, in the hyperbolic section
case the shift parameter c is not expressed explicitly.

Most of the results are published in many textbooks of mechanics but usually without
proofs or only for circular cylinders and accompanied by a few unsolved examples. In the
present paper the mathematical model is derived in details and there are several fully solved
examples including the rectangle. The example of hyperbolic cross-section seems to be new.
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