Dynamická únosnost a životnost

Lekce 1

Elementary Fatigue Analysis

Jan Papuga

Elementary Fatigue Analysis – DUŽ@TUL, 2018, Lecture #1

Jan Papuga

- living in Kunovice, Czech Republic
- PhD in Applied Mechanics 2006
- working at
 - Czech Technical University in Prague
 - Evektor spol. s r.o. (aircraft producer)
- previous jobs Kappa 77 (producer of ultralight airplanes), SKODA VYZKUM (VZU Plzen now), ITER facility in Cadarache (France)
- developer of PragTic fatigue solver www.pragtic.com
- initiator and leader of FADOFF consortium www.fadoff.cz
- chairman of "Workshop on Computational Fatigue Analysis" (3-day educative workshop, 6 volumes already)
- Manager
 - "Damage Tolerance Methods and Applications 2011" a 11-day course in spring 2011
 - 6-day course "Design and Damage Tolerance for Aeronautical Engineers" in 2014
- co-chairman of Variable Amplitude Loading Conference (VAL2015) Prague, March 2015

Recommended sources

- http://www.kmp.tul.cz/content/interaktivni-studijni-materialy
 - lectures
- Reading
 - Jágrová, J., Čapek, L.: Dynamická únosnost a životnost, skripta TUL FS, 2013
 - Růžička, M-Hanke.M.-RostM.: Dynamická pevnost a životnost. skripta ČVUT v Praze, 2. vyd., 1992.
 - Růžička, M, Fidranský J.: Pevnost a životnost letadel, skripta ČVUT v Praze, 2000 (mechanika.fsid.cvut.cz)
 - Haibach, E.: Betriebsfestigkeit. 3. Auflage., Springer, 2006.
 - Schijve, J.: FatigueofStructuresand Materials. Springer, 2009.

Limit state design

Strength limit states (Mezní stavy pevnosti)

- Static strength
- Plasticity
- Stability, buckling
- Brittle fracture
- Creep

. . .

- Fatigue
- Thermal shock

Serviceability limit states (MS funkční způsobilosti)

- Elastic and plastic deformation
- Shock
- Dynamic response
- Wear

. . .

Corrosion

+ all combinations of aforementioned limit states

Theory of limit states – Application in

Design (i.e. a priori)

- Structure design
- Optimization
- Technology selection
- Setting service limitations

Service (i.e. a posteriori)

- In-service inspection
- Failure
- Accidents

www.reskof.cz

Fatigue process vs. Static load

90% of in-service failures are caused by fatigue damaging

Fatigue Damage

Caused by variable loading

 Usually. the damaging process cannot be seen by naked eye, but there are some exceptions:

http://www.youtube.com/watch?v=3mclp9QmCGs

Cyclic process

Stress Amplitude. Sa

Mean Stress. Sm

Stress Range. ΔS

$$S = S_{maximum} - S_{minimum}$$

Two types of fatigue loading regimes

stress amplitude loading control - soft loading strain amplitude loading control - hard loading.

Wilhelm Albert (1829-1837)

- 1806 starts in a mining and forestry office in Clausthal
- From 1836, he manages all mines in Harz area
- 1829 observes. studies and describes damaging of chains serving for mining elevators caused by repeated loading of a small magnitude

Probably the first written note on fatigue process

On "the first note"

- Albert was the first to note something like that in a written text
- But:

So long you go for water with a jug, that its handle breaks.

Czech proverb on fatigue process, my translation

• In English:

It is the fate of glass to break.

Well, that can be a static process, not fatigue

The jug goes to the well until it breaks.

Quite rare proverb, is it the same? It can be even a static process...

If starting with history...

http://courses.washington.edu/mengr541/ramulu/541/notes/notes1.pdf

Elementary Fatigue Analysis – DUŽ@TUL, 2018, Lecture #1

The Basic Evolution Rule

You don't learn from making mistakes!
 You learn from getting caught making mistakes!

Dan Lingenfelser. Caterpillar at SAE FD&E meeting. Fall 2007

Scale of the Mistake Matters

It could be that the purpose of your life is only to serve as a warning to others

Dan Lingenfelser. Caterpillar at SAE FD&E meeting. Spring 2008

Train disaster in Versailles (1842)

Cause: Broken axle of the first locomotive Result: Second machine and several wagons piled up over it and caught fire

 Death of famous discoverer
 Dumont D'Urville and his family

http://catskillarchive.com/rrextra/wkbkch06.Html

William J. M. Rankine (1840's)

Melaguen Rukine

- Famous Scottish physist and mechanist (Rankine cycle)
- Studies broken axles of locomotives and accents the effect of stress concentration
- Mostly ignored the mainstream opinion is that the repeated loading causes recrystallization and strengthening of the structure

Elementary Fatigue Analysis – DUŽ@TUL, 2018, Lecture #1

John Braithwaite (1854)

- Engineering family with roots in the 17th century
- Together with Ericsson. he built the first locomotive able to reach 1 mile per one minute
- 1854: The first time "fatigue" term was used in relation to dynamic loading of mechanical structures:

F. Braithwaite. (1854). "On the fatigue and consequent fracture of metals". *Institution of Civil Engineers. Minutes of Proceedings*. 463–474.

August Wöhler (1850-1870)

- First systematic research, fatigue machine
- Introduces the term fatigue limit, describes the higher effect of the stress range in comparison to maximum stress

Studies

 fatigue
 damaging
 of railway axles

August Wöhler (1850-1870)

Studied fatigue failures

on railway axles

 wheels shrink fitted on the axles

Reasons:

- High peak stresses at the joint
- Fretting fatigue in the joint induced by bending of the axles

Another outcome:

 Fatigue curve (Wöhler curve. S-N curve)

Wheel clamped on axle Strong joint

S-N curve

Rice. R.C.; Jackson. J. L.; Bakuckas. J.; Thompson. S.: Metallic Materials Properties Development and Standardization (MMPDS) [DOT/FAA/AR-MMPDS-01 Report]. FAA. Washington D.C. 2003.

What everything matters?

Product Form:	t Form: Rolled bar, 1.125 inch diameter				
Properties:	<u>TUS, ksi</u> <u>TYS, ksi</u> <u>Temp., °F</u> 7349RT				
Specimen Details:SemicircularV-Groove, $K_t = 1.6$ 0.450 inch gross diameter0.400 inch net diameter0.100 inch root radius, r60° flank angle, ω					
Surface Condi	tion: As machined				

Test Parameters:
Loading - Axial
Frequency - 1800 to 3600 cpm
Temperature - RT
Environment - Air

No. of Heats/Lots: Not specified

Elementary Fatigue Analysis – DUŽ@TUL, 2018, Lecture #1

Stress ratio

S-N curve equation

1910 – O. H. Basquin demonstrates on Wöhler's data qualities of his loglog relationship

$$\sigma_a = \sigma'_f \cdot (2N)^b$$

Elementary Fatigue Analysis – DUŽ@TUL, 2018, Lecture #1

Fatigue damage domains

Quasi-static strength (N<10² cycles)

Low-cycle fatigue $(10^2 < N < 5 \cdot 10^5 \text{ cycles})$

High-cycle fatigue $(5 \cdot 10^5 < N < 2 \cdot 10^6 \text{ cycles})$

Very high-cycle (giga-cycle) fatigue (N>10⁷ cycles)

Al and Mg alloys

Figure 8 S-N curves with and without fatigue limits (schematic)

Initiation of cracks

1903 – Sir James Alfred Ewing shows that the origin of fatigue cracks can be traced to microscopic cracks

Fatigue process phases

- Phase of cyclic behaviors changing - change of metal structure in whole volume. Just few percent of specimen life.
- Phase of fatigue crack nucleation - local changes in surface layers of material caused by dislocation effect.
- Phase of crack propagation stage of micro-crack growing in major crack and further crack growth.
- Phase of final fracture highspeed quasi-brittle crack of residual section (fracture toughness exceeded or ductile crack at yield and strength limit exceeded)

Damaging mechanisms

SOCIE. D. F.: Critical plane approaches for multiaxial fatigue damage assessment. In: Advances in Multiaxial Fatigue. ASTM STP 1191. Red. D. L. Dowell a R. Ellis. Philadelphia. American Society for Testing and Materials 1993. pp. 7-36.

High-cycle fatigue (HCF)

- Small loads = long lifetimes
- Small or negligible areas of plasticity
- Most of the lifetime spent on crack initiation
- Use of S-N curves preferred
- Design to unlimited lifetime is an option

Fatigue limit

- Limit stress. that can be applied on the specimen without breaking it after any time
- Can be only conventional value in some cases (aluminium alloys)
- Important when designing to infinite life
- Giga-cycle fatigue (GCF) / Very high cycle fatitue (VHCF):

Fatigue Limit Estimates

Relationship Between Fatigue Limit and Ultimate Strength for Steel Specimens (From Steel and Its Heat Treatment, by D. K. Bullens, John Wiley & Sons, New York, 1948, with permission of the publisher)

Fatigue Limit Estimates - FKM

FKM Guideline – German guideline defining recommended practice in static and fatigue analyses. both in nominal and local approaches

Material group	f _{W.σ}	f _{W.τ}
Case hardening steel	0.4	0.577
Stainless steel	0.4	0.577
Forging steel	0.4	0.577
Other steels	0.45	0.577
Cast steel	0.34	0.577
Spheroidal cast iron	0.34	0.65
Ductile cast iron	0.3	0.75
Grey cast iron	0.34	1.0
Wrought aluminum alloy	0.3	0.577
Cast aluminum alloys	0.3	0.75

$$S_F = f_{W.\sigma} \cdot R_m$$

$$S_{F,t} = f_{W,\tau} \cdot S_F$$

FKM-Guideline: Analytical Strength Assessment of Components in Mechanical Engineering. 5th revised edition. Frankfurt/Main, Forschungskuratorium Maschinenbau (FKM) 2003.

Elementary Fatigue Analysis – DUŽ@TUL, 2018, Lecture #1

Damaging mechanisms

SOCIE. D. F.: Critical plane approaches for multiaxial fatigue damage assessment. In: Advances in Multiaxial Fatigue. ASTM STP 1191. Red. D. L. Dowell a R. Ellis. Philadelphia. American Society for Testing and Materials 1993. pp. 7-36.

31

Gigacycle Fatigue

- Cracks can start from the inner of the cross-section
- Related to material non-homogeneity

Gigacycle Fatigue

Gigacycle Fatigue

Sonsino CM. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int J Fatigue 2007; 29:2246-58.

Material	N _k	k*	Decrease per decade in %	$1/T_{\sigma}$
Steel, not welded	5x105 - high-strength 2x106 - structural steels	45	5	1.20
Steel, welded	1x10 ⁶ - thermal stress relieved	45	5	1 50
	1x10' - high tensile residual stresses	22 10	1.50	
Cast steel	5x10 ⁵ - high-strength 2x10 ⁶ - medium-strength	45	5	1.40
Sintered steel	5x10 ⁵ - high-strength 2x10 ⁶ - medium-strength	45	5	1.25
Cast nodular iron	5x10 ⁵ - high-strength 2x10 ⁶ - medium-strength	45	5	1.40
Wrought Al alloys, not welded	$1 \times 10^{6} - 5 \times 10^{6}$	22	10	1.25
Wrought Al alloys, welded	 1x10⁶ - low tensile resid. stresses 1x10⁷ - high tensile resid. stresses 	22	10	1.45
Cast aluminium	$1x10^{6}-5x10^{6}$	22	10	1.40
Sintered aluminium	1x10 ⁶	22	10	1.25
Wrought Mg alloys, not welded	$5x10^{4}-1x10^{5}$	45	5	1.20
Cast magnesium	$1 \times 10^{5} - 5 \times 10^{5}$	45	5	1.30
Wrought Mg alloys, welded	5x10 ⁵ - low tensile resid. stresses 1x10 ⁷ - high tensile resid. stresses	22	10	1.50

Explanation: $N_k \sim \text{break point}$; $k^* \sim \text{S-N}$ curve slope after N_k ; $T_\sigma = \sigma_a(P_s = 90\%) / \sigma_a(P_s = 10\%)$

Damage growth

Strain-based fatigue curve

1954 – Wholly independently. L. F. Coffin and S. S. Manson show practical use of plastic strains in the crack tip for the fatigue crack growth

The curve relates to a moment of initiating a technical macro-crack

Manson-Coffin curve (e-N curve)

The criminal and its traces

Input strain energy => hysteresis loop

Even macroscopically elastic loading changes to elastic-plastic locally

Cyclic Material Behavior and Its Changes

The material response needn't stabilize during whole life of the specimen

Cyclic stress-strain curve

Input strain energy => hysteresis loop

The materials deformation during a fatigue test is measured in the form of a hysteresis loop. After some initial transient behavior the material stabilizes and the same hysteresis loop is obtained for every loading cycle. Each strain range tested will have a corresponding stress range that is measured. The cyclic stress strain curve is a plot of all of this data

Cyclic stress-strain curve formula

Static: Ramberg-Osgood formula

 $\sigma = K \cdot \varepsilon_p^n$

Aproximation of the cyclic stress-strain curve

$$\sigma_a = K' \cdot \varepsilon_{ap}^{n'}$$

$$\mathcal{E}_a = \mathcal{E}_{ae} + \mathcal{E}_{ap} = \frac{\sigma_a}{E} + \left(\frac{\sigma_a}{K'}\right)^{\frac{1}{n'}}$$

- cyclic strain hardening coefficient
- cyclic strain hardening exponent
- Young's modulus of elasticity (tension)

M-C vs. R-O

$$\varepsilon_{a} = \varepsilon_{ae} + \varepsilon_{ap} = \frac{\sigma_{a}}{E} + \left(\frac{\sigma_{a}}{K'}\right)^{\frac{1}{n'}}$$
$$\sigma_{a} = \sigma'_{f} \cdot (2N)^{b}$$
$$\varepsilon_{a} = \varepsilon_{ae} + \varepsilon_{ap} = \frac{\sigma'_{f}}{E} (2N)^{b} + \varepsilon'_{f} (2N)^{b}$$

- *K*' cyclic strain hardening koeff. *n*' cyclic strain hardening exponent σ'_{f} fatigue strength coefficient
- *b* fatigue strength exponent
- ε'_{f} fatigue ductility coefficient
- *c* fatigue ductility exponent

6 material parameters. 4 independent:

$$\sigma_a = \sigma'_f \cdot (2N)^b = K' (\varepsilon'_f)^{n'} \cdot (2N)^{c \cdot n'}$$

$$K', n', \sigma'_{f}, b, \varepsilon'_{f}, c$$

$$n' = \frac{b}{c}$$

$$K' = \frac{\sigma'_{f}}{(c')^{n'}}$$

 $\left(\mathcal{E}_{f}^{\prime} \right)$

С

Low-cycle fatigue (LCF)

- High loads = shorter lifetimes
- Larger areas of pronounced plasticity
- Relates only to the life till the crack initiation
- Use of M-C curves preferred
- Plasticity is an issue

De Havilland Comet (1954)

First airliner able to fly in high altitudes

Two airplanes lost with 2 months (1286 a 903 take offs. nobody survived)

Reason

 Combined bending caused that the stress at the inner surface was higher than on the outer (the stress higher than 70% of the fatigue limit

Outcome

Change from the safe-life concept to the fail-safe