Dynamická únosnost a životnost

Lekce 2

Stress-Based Fatigue Analysis, Part #1

Jan Papuga

Different Attitudes to Fatigue Design

Silver Bridge Collapse - 1967

- Bridge over Ohio river collapsed in less than 1 minute. 46 casualties
- Was not fail-safe
- Corrossion crack in one member lead to complete disintegration
- Right practice here

https://www.youtube.com/watch?v=dGQfUWvP0II

General Dynamics F-111 (1969)

Bomber / fighter with variable wing configuration

F-111#94 lost a wing during a training flight (just one year a service)

Reason:

 Large crack in the hinge already from the manufacturing process (23.4x5.9mm!) – only short growth (low fracture toughness of the highstrength steel)

DAN-Air Boeing 707-300 (1977)

- Lost whole right stabilizer with elevator
- 47621 flight hours. 14 year old (60000 FH designed. 20 years)
- Reason: Stabilizer (its upper flange) designed as fail-safe but:
 - Skin material changed from 7075-T6 to steel.
 higher stiffness – was not supported by a full scale test
 - Only visual inspection prescribed
 - Once the flange broke.
 there was not enough time till the next inspection
 - Stabilizer was not fail-safe due to the chosen way of inspection

DAN-Air Boeing 707 (1977)

Consequences:

- Fail-Safe is not guaranteed by design only. but also by the selection of the inspection method
- Material exchange can lead to stress redistribution and should be supported by

Boeing 737 (1988)

- Aircraft lost 5.5 m of the pressurized cabin
- 35496 FH. 89680 landings. 19 years in service. short flights. humid sea air
- Reason:
 - Quick joining of multiple small cracks in a row
 Multiple Site Damage (MSD)

Causes of fatigue issues

Sampath. S.G. and Simpson. D.: Airframe Inspection Reliability Under Field/Depot Conditions. Terms of Reference of AGARD Structures and Materials Panel Proposed Activity SC.77. October 1995.

Intuitively

For inputs:

- Material with a known S-N curve
- Load amplitude -> FEA -> stress amplitude σ_a

We can get immediately the final lifetime

Aspects influencing the fatigue life

Questions – Part I

- 1. How fatigue design and static design of structures differ?
- 2. Typical attributes of low cycle fatigue and of high cycle fatigue?
- 3. Draw a hysteresis loop and describe on it elastic and plastic part of strain.
- 4. Specify phases of damage and fatigue progress in metals.
- 5. What is the main difference between safe-life and fail-safe design philosophy?
- 6. Which are main attributes of the damage tolerant design philosophy?
- 7. Define the fatigue limit of a material.
- 8. Which type of fatigue curve describes high-cycle fatigue primarily? Draw this curve.
- 9. Which type of fatigue curve describes low-cycle fatigue? Draw this curve.

10.Could be the fatigue limit higher than yield strength?

11.How can you estimate the fatigue limit of carbon steel from tensile strength?

- 1. Example 1: Approximation of a stress amplitude is $\sigma_a = K' \cdot \varepsilon_{ap}^{n'}$. Derive equation for the total strain amplitude of a hysteresis loop $\varepsilon_a = \varepsilon_{ae} + \varepsilon_{ap} = ?$
- 2. Example 2: Approximation of the fatigue curve is $\sigma_a^w \cdot N = C$ or $\sigma_a = \sigma'_f (2N)^b$. Derive relations between parameters C, (σ'_f) , b, w.
- 3. Example 3: There are 6 material fatigue parameters K', n', σ'_f , b, $\varepsilon'_{f,}$ c, only are 4 independent. Derive relations between these parameters.
- 4. Example 4: There is special number of cycles (N_t) in the Strain-life curve, where $\varepsilon_{ae} = \varepsilon_{ap}$. Derive equation to calculate this number N_t .

Intuitively

For inputs:

- Material with a known S-N curve
- Load amplitude -> FEA -> stress amplitude σ_a

We can get immediately the final lifetime

Maximum stress area

- Fatigue ~ weak link mechanism
- If one link is damaged, the complete chain is broken
- The bigger area with a big stress, the bigger probability of damage

Fatigue limit modifying factors

- Loading factor
- Size factor
- Surface quality factor
- Notch factor
- Mean stress effect
- Effect of thermo-mechanical treatment
- Temperature effect
- Multiaxiality factor
- Oxidation factor
- Hydrogen embrittlement factor
- Irradiation factor

. . .

Load frequency factor

Loading factor, k_L

- Historically, fatigue limits have been determined from simple bending tests with an intrinsic stress gradient in the test specimen.
- A specimen loaded in tension will have a lower fatigue limit than the one loaded in bending.
- An empirical correction factor, called the loading factor, is used to make an allowance for this effect.

Loading Type	k_L
Axial	0.9
Bending	1.0
Torsion	0.57

Size effect

- Experimentally, larger parts have lower fatigue limits than smaller parts
- S-N curves are obtained from small specimens

Size effect (exposed volume)

Equivalent diameter

• the volume of the component loaded by stress exceeding **95%** of the maximum

E,

1,0

0,9

0,8

1-carbon steel, 2-alloyed steel

1

Notch effect on fatigue properties

Effect of notches – HCF

Notch sensitivity effect

$$q = \frac{\sigma_{ef} - \sigma_{nom}}{\sigma_{max} - \sigma_{nom}} = \frac{\beta - 1}{\alpha - 1} \equiv \frac{K_f - 1}{K_f - 1}$$

Relation between both coefficients

$$K_f = 1 + \left(K_t - 1\right) \cdot q = \frac{K_t}{n}$$

Fatigue factor

$$n = \frac{K_t}{K_f}$$

Two approaches:

$$n = f(\rho, R_m) \equiv n_\rho$$

$$n = f\left(\gamma, R_m\right) \equiv n_{\gamma}$$

Notch factor modification

The S-N curve has to be modified to cover the transformation: MATERIAL -> COMPONENT

Notch sensitivity q

$$K_f = 1 + (K_t - 1) \cdot q = \frac{K_t}{n}$$

- If q = 1 then $K_t = K_f$
- The more thermomechanically treated material, the higher notch sensitivity expectable
- It is not a material parameter

Various Formulas to Include Notch Effect

If FEA Results Processed - Fatigue Factor

Volejnik, Kogaev, Serensen

$$n = f(\gamma, R_m) \equiv n_{\gamma}$$

Siebel, Stiller $n_{\gamma} = 1 + \sqrt{c \cdot \gamma}$

Lower lifetimes?

Stress Gradient Vs Critical Distance

In addition to the nominal approach (using K_f), there are two basic

concepts for local stress evalution. **The basic premise:** Stress directly at the notch:

1) Relates to K_t factor

2) Should not be used directly without any modification for fatigue life

estimate, which depends on K_f

3) If used, the result is likely to be conservative

Stress gradient:

 Its value helps to compute fatigue factor n, which shifts the effective material curve upwards

Critical distance:

- The stress used for calculating the fatigue life is derived in a particular distance from the notch root
- the effective stress is thus lower, than it would be at the notch

Theory of Critical Distance (TCD)

Simplifies the critical volume method to a 1D problem.

- Theorem: The crack initiation at the notch starts in the moment, when some reference value (Sig HMH, Sig1, Damage Parameter P) in a defined depth below the surface reaches critical value:
 - Point method (crit. depth L_c)
 - Line method (analyses the integral mean of the stress from the notch root to the distance L_L)

Summary – Notch Effect

- The notches decrease the fatigue life and fatigue strength
- Nominal solution works through notch sensitivity factor *q* and stress concentration factor *K_t* to estimate notch factor *K_f*, and to modify the S-N curve accordingly
- If directly the local stress value read from the FEA-results is used, the resulting life value is likely to be conservatively underestimated.
- This is the reason, why some correction has to happen:
 - TCD: Decrease the processed stress (and use original S-N curve)
 - Stress gradient: Modify the material curve (and use original local stress)
- Though such methods have been already implemented in some commercial fatigue solvers, the extent of validation has to be doubted.

Effect of the FE-model quality

- Best results for equi-sided elements - bricks
- The sizes of element sides can differ for some variants here

 this is the reason
 for only slight
 difference
 between variants
 with 3 and 4
 elements

- Common mesh quality in static analyses of airplanes in Evektor
 - 2 elements per a quarter-circle

Push-pull load case

Relative stress gradient (RSG):

$$\gamma' = \frac{\gamma}{\sigma_{max}} = \frac{1}{\sigma_{max}} \frac{d\sigma}{dx}$$

Note:

Only minor differences in results of maximum stress are likely to be caused by a simple load mode with the obvious hot-spot location, in which the node is positioned.

- If we compare various notches here:
 - RSG by common models are close to one half of the right value
 Specimen type (radius of equivalent
 - Minimum effect of the mesh quality on the SCF (see K_{t,net})
 - First principal stress results in less scattered analysis error compared with von Mises stress

Specimen type (radius of	equivalent	parameter	ideal FE-	Evektor FE-	relative deviation
the notch root)	the notch root) stress		model	model	from the ideal value
U notch (D-1 (mm) rool	von Mises	r.s.g. [1/mm]	1.610	0.836	-48%
U-notch (R=1.6 mm), real	stress	Kt, net [-]	2.133	2.076	-3%
nouel uses 5 elements	1st principal	r.s.g. [1/mm]	1.203	0.655	-46%
per a quarter-circle	stress	Kt, net [-]	2.360	2.306	-2%
Fillet (B=0.4 mm) real	von Mises	r.s.g. [1/mm]	5.953	2.821	-53%
per a quarter-circle	stress	Kt, net [-]	2.469	2.229	-10%
	1st principal	r.s.g. [1/mm]	4.618	2.452	-47%
	stress	Kt, net [-]	2.717	2.543	-6%
) (notch (D-1 (mm)) rool	von Mises	r.s.g. [1/mm]	1.582	0.778	-51%
per a quarter-circle	stress	Kt, net [-]	2.242	2.177	-3%
	1st principal	r.s.g. [1/mm]	1.141	0.603	-47%
	stress	Kt, net [-]	2.506	2.453	-2%
	von Mises	r.s.g. [1/mm]	1.056	0.486	-54%
model uses 3 elements	stress	Kt, net [-]	2.513	2.476	-1%
nouer uses Z elements	1st principal	r.s.g. [1/mm]	0.814	0.420	-48%
per a qualter-circle	stress	Kt, net [-]	2.628	2.609	-1%

Push-pull load case

Beware: Small maximum stress errors are likely to be caused by simple load modes and a priori known critical location. If a node is not placed to the maximum stress location, the output can be much worse.

Other fatigue limit modifying factors

Fatigue surface quality

Surface Roughness Effect

Noll and Lipson: Allowable Working Stresses. Society for Experimental Stress Analysis, Vol. III, no. 2, 1949

	а	β
Ground	1.58	-0.085
Machined	4.51	-0.265
Hot rolled	57.7	-0.718
Forged	272	-0.995

These are mean regression curves, not the safe ones!

Source: www.efatigue.com

Surface Roughness Effect – Part II

FKM-Richtlinie

$$k_{Surf} = 1 - a \cdot \log R_z \cdot \log \left(\frac{2 \cdot R_m}{R_{m,N,\min}}\right)$$

Prepared for analyzing normal stresses, if shear stresses concerned, the factor has to be multiplied by a parameter $f_{W,t}$

R_z Mean roughness in microns

 R_m Tensile strength in MPa

	Steel	Cast steel	Cast iron with spheroidal graphite	Tempered cast iron	Grey cast iron	Wrought aluminum alloys	Cast aluminum alloys
	Ocel	Litá ocel	Litina s kuličkovým grafitem	Temperovaná litina	Šedá litina	Hliníkové slitiny tvářené	Hliníkové slitiny lité
а	0.22	0.2	0.16	0.12	0.06	0.22	0.2
R _{m,N,min}	400	400	400	350	100	133	133
f _{W,t}	0.577	0.577	0.65	0.75	1	0.577	0.75

Effect of Thermo-Mechanical Treatment - k_T

FKM-Guideline: Analytical Strength				
Assessment of Components in				
Mechanical Engineering. 5th revised				
edition. Frankfurt/Main,				
Forschungskuratorium Maschinenbau				
(FKM) 2003.				

_		unnotched	notched			
I	Steel					
	Chemo-thermal treatments					
	Nitriding Depth of case 0,10,4 mm	1,10 - 1,15 (1,15 - 1,25)	1,30 - 2,00 (1,90 - 3,00)			
	700 to 1000 HV 10					
	Case hardening Depth of case 0,2 0,8 mm Surface hardness 670 to 750 HV 10	1,10 - 1,50 (1,20 - 2,00)	1,20 - 2,00 (1,50 - 2,50)			
	Carbo-nitriding Depth of case 0,2 0,8 mm Surface hardness 670 to 750 HV 10	(1,80)				
I	Mechan	nical treatment				
	Cold rolling	1,10 - 1,25 (1,20 - 1,40)	1,30 - 1,80 (1,50 - 2,20)			
	Shot peening	1,10 - 1,20 (1,10 - 1,30)	1,10 - 1,50 (1,40 - 2,50)			
ľ	Thermal treatment					
	Inductive hardening Flame-hardening Depth of case 0,9 1,5 mm Surface hardness 51 to 64 HRC	1,20 - 1,50 (1,30 - 1,60)	1,50 - 2,50 (1,60 - 2,80)			

Summary: Effects of Surface State

The most influencing for high number of cycles

Thermo-mechanical processing of the surface layer affects its properties

- Mild changes in static properties
- Pronounced effect around fatigue limit
- i.e. the effect increases with increasing the desired fatigue life

Fatigue Limit of a Notched Part

Fatigue limit of a real part

Train wheel set:

Target life?

 $\sigma_{FL,N} = \frac{\sigma_{FL} \cdot k_L \cdot k_{SF} \cdot k_S \cdot k_T}{K_f}$

Safety factor for unlimited fatigue life

1. Alternating stress (R=-1)

- In-service loading stress amplitude σ_{a}
- fatigue limit of the real part in the critical cross section area $\sigma_{\rm FL,N}$

Example – Fatigue safe factor calculation

Problem description:

Railway axle

Material: alloy steel 25CrMo4, ASTM 4130

Point A of the potential crack initiation

Experimentally measured strain amplitude (in the point A):

 $\varepsilon_{a,\max} = 312 [\text{microstrain}]$

Strain gauge (measures resistance changes):

http://www.efatigue.com

Material Property Finder

Crack Growth □Strain-Life Stress-Life

Specification: Show All ~			
Update Material List Filters			
· · · ·			
Steel 1045, Q&T, BHN=336			
Steel 1045, Q&T, BHN=390			
Steel 1045, Q&T, BHN=410			
Steel 1045, Q&T, BHN=500			
Steel 1045, Q&T, BHN=563			
Steel 1045, Q&T, BHN=595			
Steel 300M, Su=1958.2			
Steel 4130 sheet, Su=1241.1			
Steel 4130 sheet, Su=806.7			
Steel 4130, BHN=259			

Steel 4130, BHN=259

Technology		Constant Amplitude Stress-Life
Owner		public
Material Type		steel
Material Specification		AISI 4130
Material Alloy		4130
Brinell Hardness Numl	ber	259
Elastic Modulus	E=	200000 MPa
Ultimate Strength	S _u =	778 MPa
Curve Intercept	S _f '=	1195 MPa
Curve Slope	b=	-0.077
Material Reference		SAE J1099 - June 1998 (from eN dat

Material Property Estimator

ta)

 $\sigma_a = \sigma'_f \cdot (2N)^b$ $\sigma_{FL} = 1195 \cdot (2 \cdot 10^7)^{-0.077} = 327.5 \text{ MPa}$

http://www.efatigue.com

Round Shaft with Double Fillets

Estimation of the fatigue limit of a real part

factor	k	value
loading	k _L	1.00
surface finish	k _{SF}	0.67
size factor	k _s	0.70
size factor	kT	1.00

$$\sigma_{FL,N} = \frac{\sigma_{FL} \cdot k_L \cdot k_{SF} \cdot k_S \cdot k_T}{K_f}$$

$$\sigma_{FL,N} = \frac{327.5 \cdot 1.00 \cdot 0.67 \cdot 0.70 \cdot 1.00}{1.83} = 83.9 \text{ MPa}$$

Estimation of the nominal stress amplitude

Experimental strain amplitude measurement (in the point A):

STRAIN

 $\varepsilon_{a,\max} = 312 [\text{microstrain}]$

$\sigma_a = E \cdot \varepsilon = 220000 \cdot 0.000312 = 68.6 \text{ MPa}$

Engineering. 5th revised edition. Frankfurt/Main, Forschungskuratorium Maschinenbau (FKM) 2003.

Components in Mechanical

JDConsequences of failureseveremoderate \diamond^1 regularno1,5inspectionsyes \diamond^2 1,351,2

*1 Moderate consequences of failure of a less important component in the sense of "non catastrophic" effects of a failure; for example because of a load redistribution towards other members of a statical indeterminate system. Reduction by about 15 %.

 $\diamond 2$ Regular inspection in the sense of damage monitoring. Reduction by about 10 %.

Questions and problems II

- What is the difference between the stress concentration factor and the notch factor? Write their relevant formulas.
- 2. Define the notch sensitivity factor of material and write its formula (as a function of a stress concentration factor and of a notch factor).
- 3. Is the stress concentration factor of metals a material parameter? And what about the notch factor?
- 4. Is the fatigue limit of a real part the same as the fatigue limit of a basic material? What other factors could be taken in the account by an expression of such fatigue limit?
- 5. Which shaft size results in a higher k_s size factor? Shaft with higher or smaller diameter?