Dynamická únosnost a životnost

Lekce 4

Strain-Life Fatigue Analysis

Jan Papuga

Strain-Life Fatigue Analysis – DUŽ@TUL, 2018, Lecture #4

Strain-Life Analysis

Hysteresis loops, Cyclic stress-strain curve

Material changes its characteristic during loading

CSSC approximation (Ramberg-Osgood)

$$\sigma_{a} = K' \left(\varepsilon_{a}^{pl} \right)^{n'}$$

$$\varepsilon_{a} = \varepsilon_{a}^{el} + \varepsilon_{a}^{pl} = \frac{\sigma_{a}}{E} + \left(\frac{\sigma_{a}}{K'} \right)^{\frac{1}{n'}}$$

K' - cyclic hardening modulus*n*' - cyclic hardening exponent

E - Young's modulus

Strain-based fatigue curves

Manson-Coffin curve

Manson-Coffin – approximation

$$\varepsilon_a = \varepsilon_a^{el} + \varepsilon_a^{pl} = \frac{\sigma_f'}{E} (2N)^b + \varepsilon_f' (2N)^c$$

 σ_{f} ...fatigue strength coefficient, *b*...fatigue strength exponent ε_{f} ... fatigue ductility coefficient, *c*...fatigue ductility exponent

$$\varepsilon_{a}^{el} = \frac{\sigma_{f}'}{E} (2N)^{b}, \qquad \varepsilon_{a}^{pl} = \varepsilon_{f}' (2N)^{c}$$
$$\log \varepsilon_{a}^{el} = \log \frac{\sigma_{f}'}{E} (2N)^{b}, \qquad \log \varepsilon_{a}^{pl} = \log \varepsilon_{f}' (2N)^{c}$$
$$\log \varepsilon_{a}^{el} = \log \frac{\sigma_{f}'}{E} + b \log(2N), \qquad \log \varepsilon_{a}^{pl} = \log \varepsilon_{f}' + c \log(2N)$$

Strain-Life Fatigue Analysis – DUŽ@TUL, 2018, Lecture #4

Transition Fatigue Life

Dowling, N. E.: Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue. 2nd edition. Prentice Hall, Upper Saddle River 1999.

Neuber rule

Neuber

Strain-Life Fatigue Analysis – DUŽ@,TUL, 2018, Lecture #4

Material non-linearity - Consequencies

- The loading by more load channels cannot be divided to the response of the FE-model to individual load cases
- Processing of long load histories can get quite lengthy
 - Either non-linear FEA
 - Or linear FEA, but then Neuber-like method should be applied to obtain the elastic-plastic response

LCF – Masing Assumption

Massing assumes that saturated hysteresis loop (shifted in to the zero points of the coordinate system) have a

common upper branch.>

Many of metals, however, do not follow the rule.

Real Neuber Rule Application

We should distinguish

- First branch going from zero (A according to cyclic stressstrain curve)
- Next branches correspond to the description of hysteresis loop

Mean stress at notches

MSE by Strain-Based Methods

Landgraf:

$$P_2 \equiv \varepsilon_{a,v} = \frac{\sigma'_f - \sigma_m}{E} \cdot (2N)^b + \varepsilon'_f \cdot (2N)^c$$

Material curve (Basquin) modified

Smith, Watson, Topper:
$$P_1 \equiv P_{SWT} = \sqrt{(\sigma_a + \sigma_m) \cdot \varepsilon_a \cdot E}$$
Damage
parameter
(load)
modifiedBergmann: $P_3 \equiv P_B = \sqrt{(\sigma_a + k \cdot \sigma_m) \cdot E \cdot \varepsilon_a}$ Damage
parameter
(load)
modifiedErdogan a Roberts: $P_4 \equiv P_{E,R} = \sqrt{\sigma_a^{\gamma} \cdot (\sigma_a + \sigma_m)^{1-\gamma} \cdot E \cdot \varepsilon_a}$

Linearity of the damage cumulation rule

Residual stresses

- Result of previous history including plastic straining
- Compressive residual stress is positive (can be used in some technological procedures – autofrettage)
- Tensile residual stress worsens durability (e.g. too aggressive grinding)

Surface roughness effect – e-N curves

- Similar effect as by S-N curves
- The HCF region affected above all (i.e. the elastic part)

Fatigue parameters estimates

Parameter	Unalloyed and low-alloyed steels	Aluminum and titanium alloys
$\sigma_{\scriptscriptstyle f}'$	$1, 5 \cdot R_m$	$1,67 \cdot R_m$
b	-0,087	-0,095
\mathcal{E}_{f}^{\prime}	$0,59 \cdot \psi$	0,35
С	-0,58	-0,69
$\sigma_{\scriptscriptstyle C}$	$0,45 \cdot R_m$	$0,42 \cdot R_m$
${\cal E}_{C}$	$0,45 \cdot \frac{R_m}{E} + 1,95 \cdot 10^{-4} \cdot \psi$	$0,42 \cdot \frac{R_m}{E}$
N _C	$5 \cdot 10^{5}$	$1 \cdot 10^{6}$
K'	$1,65 \cdot R_m$	$1,61 \cdot R_m$
n'	0,15	0,11
where: BÄUMEL, A.; SEEGER, T.:	$\psi = 1,0$	for $\frac{R_m}{E} \le 3 \cdot 10^{-3}$
Material Data for Cyclic Loading - Suppl. 1. Materials Science Monographs	$\Psi = \begin{bmatrix} 1,375 - 125,0 \cdot -\frac{1}{2} \end{bmatrix}$	$\left(\frac{m}{E}\right) \int for \frac{m}{E} > 3 \cdot 10^{-3}$
61, Elsevier Sc. Publisher, Amsterdam 1990	ψ 2	≥ 0

Another estimate: Manson (for steels)

 $\Delta \varepsilon = 2\varepsilon_a = 3.5 \frac{R_m}{E} \cdot (N)^{-0.12} + (\varepsilon_f)^{0.6} \cdot (N)^{-0.6}$

But carefully!

Basan R, Franulović M, Prebil I, Črnjarić-Žic N. Analysis of strain-life fatigue parameters and behaviour of different groups of metallic materials. Int J Fatigue 2011;33:484-491.

Design Against Fatigue -Ways to Fatigue Analysis, Part III

Jan Papuga

Strain-Life Fatigue Analysis – DUŽ@TUL, 2018, Lecture #4

© Jan Papuga, Milan Růžička

Typology of loading

Proportional loading (in-phase loading)

The stress tensor in one moment is the multiple of a stress tensor in another moment

Non-proportional loading (out-of-phase loading)

Change of individual components of the tensors does not correlate

Changes in principal directions occur – multiaxial hardening starts

One of the Simplest Solutions

Signed von Mises stress

 Can be efficiently used also for loading with nonconstant (or random) amplitude

$$\sigma(t) = \sqrt{\frac{1}{2} \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2) \right]}$$

PragTic
$$\sigma^*(t) = \sigma(t) \cdot sign(I_1(t))$$

MSC.Nastran
(and PragTic) $\sigma^*(t) = \sigma(t) \cdot sign(max(|\sigma_1|, |\sigma_3|))$
MSE e.g. by Walker

...But the Results...

Signed von Mises

Difference between both signing variants negligible overall

Relative occurence

- Optimum variant only for ductile materials and in-phase loading with zero mean stress
- Problems
 - Mean axial stress within multiaxial loading
 - Mean torsion stress within multiaxial loading

MSC.Fatigue - MAPS

Provides the best overall results if the simplified criteria are evaluated, but still they are not very good

Multiaxial fatigue solution – Status quo

- Short development and verification time
- More interacting effects
- More complicated numerical analysis
- Unclear character of the damage initiation
- Too many existing solutions
- Their broader comparison missing (before FatLim)
- Major use in the research area only
- Demand on a universal solution exists in the commercial sphere

Surface

Maximum local loads are on the surface for any load mode.

This must be valid also for any their combination.

Exceptions:

- Bimaterial interface (also interface between hardened layer and matrix)
- Internal integrity defects, inclusions
- Forced on parts
- Contact surfaces
- Involved residual stresses

Beware of GCF – crack needn't be initiated on the surface

Damage Initiation on the Surface

Damaging mechanisms

SOCIE, D. F.: Critical plane approaches for multiaxial fatigue damage assessment. In: Advances in Multiaxial Fatigue, ASTM STP 1191. Red. D. L. Dowell a R. Ellis, Philadelphia, American Society for Testing and Materials 1993, pp. 7-36.

Cracking Mode

Region A – low-cycle fatigue, shear plastic straining dominant

Plethora of micro-cracks initiated on shear planes; they become more highlighted but do not grow further

Region B – nucleation in the shear mode, then the macro-crack grows perpendicularly to the direction of the maximum principal stress.

The nucleation is a small part of the total life. Next damage ascribed to the growth of the major crack. Some material can damage in this mode preferably.

Region C – high-cycle fatigue. The most of the life spent on a crack nucleation (in the shear mode). The macro-crack grows fast in the normal mode.

Depends on:

Material

Load type

Multiaxial Fatigue Calculation

Common Assumptions

- Induced damage ~ Crack ~ Plane
- Load state description on that plane constitutes direct input for fatigue parameter
- The shear parameters play usually the dominant role, normal parameters are secondary (but important anyhow)

For reflection:

- •If the FEM model is used, minor details are often modelled with abrupt changes of the surface plane.
- •Is the plane stress condition valid there?
- •How to define the normal line to the surface?

Stress State on a Plane

Proportional loading loading σ_n m

Directions of σ_n, v_n and
 τ remain the same
 during loading

Non-proportional

- Directions of σ_n remain
 the same during loading
- Shear stress can rotate

Shear Stress Decomposition

How to define shear stress amplitude and mean stress by non-proportional loading?

Longest Projection Method

Minimum Circumscribed Circle Method

Longest Chord Method

? Isosceles ?

Minimum Circumscribed Ellipse Method

Well, but what is the cycle?

Load History Decomposition I

Continuous load history -> Set of discrete cycles

 What to do in the case of multiaxial non-proportional loading?

Load History Decomposition II – Multiax.

- Why not to use the rain-flow procedure?
 - on normal stress (Langlais, Vogel, Chase and others)
 - on resolved shear stress (Wang & Brown, Socie)
 - on some other equivalent parameter (Kenmeugne et al.)
- Well, why to use it?
 - The idea behind the rain-flow was based on the energy closed within the complete hysteresis loop
 - Where are the closed loops here?
 - Selection of some variable ensures omission of the effect of others
- More complicated models
 - Wang & Brown decomposition as proposed in 1996
 - No decomposing at all? Continuous damaging? Stefanov's method:
 - http://www.freewebs.com/fatigue-life-integral/

Critical Plane Approach Integral Approach

$$ComputeX_i on allplanes$$

$$CP = P(max(X_i))$$
$$D = D_{CP}$$

Mc Diarmid, Wang & Brown, Socie

- Critical plane according to:
 - Maximum Shear Stress Range (MSSR)
 - Maximum Damage (MD)
 - Critical Plane Deviation (CPD)
 - other...

Papadopoulos, Kenmeugne et al.

- Averaging ~ Integration
- Integrate:
 - Complete damage parameter
 - Individual variables

Critical Plane Approaches

- MSSR (maximum shear stress amplitude)
 - One large shear stress amplitude on one plane can create less damage than a large number of smaller cycles elsewhere
- MD (maximum damage)
 - This approach should overcome the problem above
 - More actual

Multiaxial solution

- Solution enclosing the load path in the Ilyushin deviatoric space (IDS)
- Critical plane approach CPA:
 - Final damage is related to the maximum of the damage parameter
 - Damage
 - localized to one specific plane
 - has no relation to a damage computed on any other plane
- Integral approach IA:
 - The damage parameter or individual variables are integrated (i.e. averaged) over all planes
 - Damage
 - is not isolated to one specific plane
 - even perpendicular planes interact
 - the extremes found on particular planes are suppressed

IDS methods

IDS ~ Ilyushin Deviatoric Space – five-dimensional space, in

which the point position is derived from stress tensor deviator

$$s_{1} = \sqrt{\frac{3}{2}} s_{xx}; \qquad s_{2} = \frac{1}{\sqrt{2}} (s_{yy} - s_{zz}); \qquad \sqrt{J_{2}} = \sqrt{\frac{1}{2}} \mathbf{s} \cdot \mathbf{s} = \sqrt{s \cdot s}$$
$$s_{3} = \sqrt{2} s_{xy}; \qquad s_{4} = \sqrt{2} s_{xz}; \qquad s_{5} = \sqrt{2} s_{yz}.$$

Critical plane methods and integral criteria

- analyze stress state on various planes
- to get the shear stress range, the minimum circumscribed circle algorithm (MCCM) is run in 2D on each plane

IDS methods

- the same MCCM algorithm is run in 5D
- but only once!
- results in a quicker solution

Criteria for Fatigue Limit Estimation

How to check them?

All fatigue criteria converted to the standard:

 $D_p \leq f_{-1}$ f_{-1} -fatigue limit in fully reversed axial loading

For an experimentally set multiaxial fatigue limit:

$$D_p = f_{-1}$$

Fatigue index error:

$$f_{-1}$$
 – type of axial loading

- (push-pull, bending,
 - rotating bending)
- corresponds to the fatigue
- limit used in calculation

$$\Delta FI = \left(\frac{D_P - f_{-1}}{f_{-1}}\right) \cdot 100\%$$

FL Criteria - Method of Evaluation II

Statistical evaluation of DFI within prepared

groups

- average value
- range (max-min)
- standard deviation Histograms of

fatigue index error

Fatigue limit solution today

In fatigue solvers:

			co	mmerc	ial		non-	comme	ercial	validation on 407 exps		
Fatigue limit estimation tools in available fatigue solvers	Fe-Safe	MSC.Fatigue	Femfat	nCode Design Life	FEARCE	LMS Virtual Lab C. Durability	WinLIFE	eFatigue	Code Aster	PragTic	mean ∆FI	standard deviation of∆Fl
Dang Van (1973, 1989)	Х	Х		Х	Х	Х	Х	Х	Х	Х	-0.1%	12.2%
Findley (1957)							Х	Х		Х	8.7%	15.2%
McDiarmid (1991, 1994)		Х		Х	Х					Х	-6.2%	12.0%
Sines (1959)								Х)		-4.3%	17.9%
Matake (1977)									Х	Х	6.4%	15.8%
proprietary solution			Х							Х		

- Δ FI relative error between predicted and experimental fatigue limit
 - Δ FI =0 ideal
 - Δ Fl >0 conservative
 - Δ Fl <0 non-conservative

FatLim Database

Presently:

- 451 experiments
- 18 calculation methods

Statistic evaluation of the

fatigue index errors for

the selected conditions

Beware: Had to be

replaced by newer and

better checked FADOFF Results of

database

found.

McDiarmid - MD

Dang Van criterion

$$a_{DV} \cdot C_a + b_{DV} \cdot \sigma_{H,\max} \leq f_{-1}$$

Critical plane criterion

The most often used representative of multiaxial criteria

Use of maximum hydrostatic stress does not seem to give acceptable results

Conservative: MS, Ax+Ax

Non-conservative:

- nMS, OP
- MS,To

average: -0.1%

range: 92.9%

standard deviation: 12.2%

Weakness of Dang Van method

Hard to believe: multiaxial fatigue

Mean values of ΔFI in individual groups (tests)	CRO	DV	relative difference between predicted and experimental fatigue limit
All (407) nMS (171) nMS.OP (40)	-8.0 -3.1 -11.5	-0.1 -0.6 -7.9 ×	no mean stress, out-of-phase loading
nMS,IP (131)	-0.5	1.7 ◄	no mean stress, in-phase loading

 There is a significant difference in mean prediction values depending on the phase shift of individual load channels So simple, that it can be computed in MS Excel

IThe cycle has to be detected a priori!

Amplitude and mean value of each stress component is evaluated:

$$\sigma_{a} = \sqrt{\frac{1}{2} \left[(\sigma_{x,a} - \sigma_{y,a})^{2} + (\sigma_{y,a} - \sigma_{z,a})^{2} + (\sigma_{z,a} - \sigma_{x,a})^{2} + 6(\tau_{xy,a}^{2} + \tau_{yz,a}^{2} + \tau_{zx,a}^{2}) \right]}$$

$$\sigma_{m}^{*} = sign[I_{1,d}] \cdot \sqrt{\frac{1}{2} \left[(\sigma_{x,m} - \sigma_{y,m})^{2} + (\sigma_{y,m} - \sigma_{z,m})^{2} + (\sigma_{z,m} - \sigma_{x,m})^{2} + 6(\tau_{xy,m}^{2} + \tau_{yz,m}^{2} + \tau_{zx,m}^{2}) \right]}$$

The mean equivalent value is signed according to the stress tensor invariant with biggest magnitude

Manson-McKnight - Results

Not that bad as by signed von Mises

Many evaluated classes of experiments with conservative mean value (To; nMS-OP; Ax+To; brittle materials)

- Ax+Ax with phase shift dangerously nonconservative (mean value ∆FI=-17.2% !)
- In evaluation of individual classes is the Dang Van method better, but fails in mean stress effect

MMK versus Dang Van

DV – Dang Van critical plane method (1974) MMKF – Manson-McKnight according to Filippini (2010)

MM/K patta ba waad	ΔFI in individual groups	M	ean valu	es		Range		Standard deviation			
IVIIVIN NOT TO DE USED	(tests)	DV	MMKF	Diff	DV	MMKF	Diff	DV	MMKF	Diff	
for	All (407)	0	1	1	93	106	13	12	12	-1	
101	nMS (171)	-1	5	5	53	71	18	8	9	1	
hrittle materials	nMS,OP (40)	-8	8	16	53	70	18	12	14	2	
Sincle materials	nMS,IP (131)	2	4	2	22	45	22	4	7	3	
MS,Ax+Ax,	MS (236)	0	-1	-2	93	82	-11	15	12	-2	
-, ,	MS,Ax (41)	-1	0	1	64	62	-2	13	11	-2	
PS<>0	MS,To (18)	-16	-5	11	46	65	19	12	16	4	
	MS,Ax+Ax (36)	12	-11	-23	57	43	-14	13	12	-1	
out-of-phase	MS,Ax+Ax,noPS (18)	15	-3	-18	43	22	-20	12	8	-4	
loading	MS,Ax+Ax, PS<>0 (18)	9	-19	-28	57	40	-18	14	10	-4	
Ioaung	Ax+To (285)	-2	3	5	63	96	33	10	10	0	
	MS,Ax+To (114)	-3	0	3	61	66	5	12	10	-1	
WINK USEFULTO	MS-Ax, Ax+To (52)	-1	6	7	61	43	-18	12	9	-4	
nrassura vassals	MS-To, Ax+To (31)	-10	-6	3	41	41	1	9	8	-1	
pressure vessers	ductile (352)	0	0	0	93	82	-11	13	11	-2	
	ductile,nMS (118)	-1	4	4	43	30	-12	8	5	-3	
	ductile,nMS,IP (86)	3	3	1	18	18	1	4	5	1	
The difference is not	brittle (37)	-1	11	12	42	75	33	7	16	9	
The unterence is not	brittle, nMS(35)	-1	12	13	42	70	27	7	16	9	
hig overall!	brittle,nMS,IP (29)	-2	8	10	16	44	28	3	11	8	
	extra-ductile (18)	2	0	-2	19	18	-1	5	4	-1	
	extra-ductile,nMS,IP (16)	3	-1	-4	12	11	-2	3	3	0	

New results – Δ FI in fatigue limit estimate

New MMP model – equivalent stress, no PragTic, just pure Excel solution! Published in International Journal of Fatigue, 2017

	Description		average				rar	nge		standard deviation				
Abbrev.	Description	Items	MMP	MMKF	PCRN	DV	MMP	MMKF	PCRN	DV	MMP	MMKF	PCRN	DV
All	All data items	307	-1.6%	-1.1%	1.6%	-2.4%	71.8%	142.0%	67.7%	104.8%	10.5%	15.0%	7.6%	16.7%
MS	some mean stress applied	183	-1.9%	-5.0%	1.8%	-4.3%	71.8%	134.3%	51.8%	104.8%	12.3%	17.0%	8.0%	19.7%
MS-	negative mean stress applied	22	5.2%	0.1%	4.4%	1.0%	69.5%	131.0%	38.6%	83.1%	18.8%	25.3%	11.2%	20.4%
nMS-	Without cases with negative mean stress	285	-2.1%	-1.2%	1.4%	-2.7%	69.7%	87.0%	67.7%	104.8%	9.4%	13.9%	7.2%	16.3%
nMS	no mean stress applied	122	-1.0%	4.8%	1.6%	0.6%	60.5%	68.8%	67.7%	81.4%	7.0%	9.1%	7.0%	10.2%
brittle	brittle material with kappa < 1.3	34	-4.3%	9.7%	2.9%	2.5%	52.7%	42.1%	38.6%	96.9%	9.6%	11.2%	8.2%	19.6%
brit,nMS	brittle material without any mean stress applied	19	-5.8%	12.0%	0.4%	0.3%	24.2%	32.5%	21.1%	41.2%	6.2%	8.8%	4.9%	9.5%
ex-duct	extra-ductile material with kappa > sqrt(3)	43	-7.7%	-13.3%	-4.1%	-16.8%	46.1%	57.1%	45.9%	60.4%	11.6%	15.0%	8.5%	15.7%
ed,nMS	extra-ductile material without any mean stress applied	10	-5.4%	-7.2%	-4.6%	-5.8%	39.4%	38.1%	45.9%	49.8%	12.7%	12.6%	14.1%	15.8%
ed,2A	extra-ductile material with multichannel loading	18	-10.9%	-13.6%	-5.8%	-15.2%	46.1%	52.5%	45.9%	54.4%	13.8%	14.3%	10.9%	17.5%
AT	interaction of axial and torsion loading	203	-3.1%	2.1%	1.8%	-3.0%	67.2%	83.2%	67.7%	86.0%	8.6%	12.6%	7.9%	13.9%
P,AT	proportional interaction of axial and torsion loading	106	-2.5%	2.3%	1.3%	0.4%	54.3%	67.1%	55.5%	85.3%	7.2%	10.7%	6.4%	11.2%
P,AT,MS	proportional interaction of axial and torsion loading - with mean stresses	11	-14.3%	-18.9%	-6.4%	-23.7%	25.4%	26.6%	25.4%	37.2%	7.6%	10.1%	8.0%	12.6%
NP,AT	non-proportional interaction of axial and torsion loading	96	-4.1%	1.5%	2.2%	-7.0%	49.9%	75.0%	60.8%	76.3%	9.1%	13.9%	9.0%	15.4%
NP,AT,MS	non-proportional interaction of axial and torsion loading with MS	70	-4.9%	0.5%	3.5%	-6.1%	49.9%	75.0%	40.8%	76.3%	9.3%	14.8%	8.5%	16.1%
NP,AT,nMS	non-proportional interaction of axial and torsion loading without MS	28	-2.0%	3.8%	-1.3%	-9.2%	39.4%	51.6%	45.9%	58.2%	8.1%	10.4%	9.2%	13.2%
NP,IP,AT	non-proportional in-phase interaction of axial and torsion loading	12	-4.3%	2.5%	5.3%	-0.4%	28.0%	34.7%	15.9%	32.9%	7.2%	8.4%	4.1%	9.0%
NP,OP,AT	non-proportional out-of-phase interaction of axial and torsion loading	51	-5.1%	1.0%	-0.9%	-12.8%	46.1%	56.5%	48.3%	62.3%	9.5%	11.3%	8.6%	13.8%
2-3A	interaction of two axial and potentially also torsion load channels	39	6.4%	-9.3%	2.1%	12.1%	58.4%	49.4%	29.4%	59.4%	16.5%	10.1%	6.3%	15.1%
2A	interaction of two axial load channels	18	10.0%	-12.7%	0.8%	7.5%	56.2%	37.1%	17.7%	59.4%	17.7%	9.9%	5.2%	17.8%
IP	in-phase loading (load path intersecting the <0,0> point)	104	-2.7%	1.8%	1.1%	0.4%	54.3%	67.1%	55.5%	85.3%	7.1%	10.8%	6.4%	11.6%
IP,MS	in-phase loading (load path intersecting the <0,0> point)	12	-13.7%	-18.6%	-5.9%	-18.9%	25.4%	26.6%	25.4%	74.5%	7.5%	9.7%	7.8%	20.0%
IP,nMS	in-phase loading without any mean stress applied	92	-1.3%	4.4%	2.0%	3.0%	45.1%	59.5%	55.5%	65.6%	5.7%	7.6%	5.5%	6.7%
IP,nMS,s	in-phase loading without any mean stress applied and prevalent axial stress	49	-0.5%	1.7%	1.5%	2.2%	31.5%	36.3%	30.5%	35.5%	5.0%	5.3%	4.4%	5.5%
IP,nMS,t	in-phase loading without any mean stress applied and prevalent torsion channel	43	-2.3%	7.1%	2.4%	3.6%	37.5%	52.8%	46.8%	55.6%	6.3%	8.7%	6.5%	7.8%
MS,Ax	axial loading only (with mean stress involved)	42	-1.3%	-2.8%	1.2%	-5.8%	54.7%	134.3%	38.0%	104.8%	10.1%	20.2%	6.5%	21.5%
MS,To	torsion loading only (with mean stress involved)	21	-2.9%	-14.9%	-0.8%	-18.4%	34.8%	72.6%	42.0%	39.9%	7.7%	18.0%	8.4%	13.1%
OP	out-of-phase loading	77	-2.7%	-2.6%	0.2%	-3.3%	67.2%	74.7%	56.5%	78.6%	11.4%	13.2%	8.0%	18.7%
OP,nMS	out-of-phase loading without any mean stress applied	28	-0.9%	5.2%	-0.7%	-8.8%	60.5%	68.8%	56.5%	58.2%	10.5%	12.6%	10.3%	13.8%
OP,MS	out-of-phase loading with some mean stress applied	49	-3.7%	-7.0%	0.8%	-0.2%	66.6%	48.3%	28.2%	78.6%	11.7%	11.4%	6.2%	20.3%
OP,MS,AT	out-of-phase loading with some mean stress applied, axial-torsional load cases only	24	-8.4%	-2.3%	0.0%	-16.3%	38.2%	47.4%	28.2%	45.6%	9.8%	11.1%	7.8%	13.8%
OP,MS,2A	out-of-phase loading with some mean stress applied, bi-axial load cases only	9	3.3%	-17.3%	2.1%	13.2%	53.2%	37.1%	14.4%	39.4%	14.8%	11.0%	4.2%	14.6%
OP,MS,3A	out-of-phase loading with some mean stress applied and triaxial load states	16	-0.6%	-8.3%	1.2%	16.4%	31.8%	26.9%	15.6%	37.1%	9.0%	7.2%	4.0%	9.7%

Crossland criterion

 $a_C \cdot \left(\sqrt{J_2}\right)_a + b_C \cdot \sigma_{H,\max} \leq f_{-1}$

IDS type, simple calculation Fascinating range in comparison to the Sines' version

Significantly non-conservative mean value, high standard deviation

Non-conservative:

- nMS,OP
- MS

average: -8.0%

range: 64.9%

standard deviation: 11.4%

Papuga PCr criterion

$$\sqrt{a_c \cdot C_a^2 + b_c \cdot \left(N_a + \frac{t_{-1}}{f_0}N_m\right)} \le f_{-1}$$

$$\kappa < \sqrt{\frac{4}{3}} \approx 1.155 : a_c = \frac{\kappa^2}{2} + \frac{\sqrt{\kappa^4 - \kappa^2}}{2}, \quad b_c = f_{-1}$$

$$\kappa \ge \sqrt{\frac{4}{3}} \approx 1.155 : a_c = \left(\frac{4\kappa^2}{4 + \kappa^2}\right)^2, \quad b_c = \frac{8f_{-1}\kappa^2(4 - \kappa^2)}{(4 + \kappa^2)^2}$$

- critical approach of MD type
- different definition of a and b parameters based on ¹2 value is the output of the mathematical analysis
- Published in Int J Fat 1/2008
- Non-conservative for MS,To
- Available in PragTic fatigue solver

average: -0.5%

range: 37.4%

standard deviation: 6.1%

PCr vs. PCrN (available now in PragTic)

The change affects	AFL in individual groups	Me	an val	ues		Range		Standard			
(MS,To) group in the	(tests)	PCr	PCrN	Diff	PCr	PCrN	Diff	PCr	PCrN	Diff	
mean value and shifts	All (407)	-1	1	2	37	31	-6	6	5	-1	
it to the right	nMS (171)	1	1	0	23	23	0	4	4	0	
it to the right	nMS,OP (40)	0	0	0	23	23	0	6	6	0	
position.	nMS,IP (131)	1	1	0	17	10	0	٦	3	0	
$(x \land \pm x \land 2M)$ bac $(x \land 2M)$	MS (236)	-1	2	3	37	31	-6	7	6	-2	
	MS,Ax (41)	-2	2	4	33	24	-9	7	5	-2	
and derived groups	MS,To (18)	-8	-2	7	17	16	0	5	4	-1	
are also improved as	MS,Ax+Ax (36)	-4	4	8	32	20	-12	7	5	-2	
regards their center	MS,Ax+Ax,noPS (18)	-4	4	8	25	19	-5	8	6	-2	
regards their scatter.	MS,Ax+Ax, PS<>0 (18)	-4	4	8	27	15	-11	7	4	3	
They are uniformly	Ax+To (285)	1	1	1	36	31	-4	5	5	0	
shifted to over-	MS,Ax+10 (114)	1	2	1	36	31	-4	6	6	0	
	MS-Ax, Ax+10 (52)	0	3	3	28	31	3	6	6	0	
conservative mean	MIS-10, Ax+10 (31)	3	3	0	24	19	-5	5	5	0	
values.	ductile (352)	-1	2	2	37	31	-6	6	5	-1	
	ductile,nMS (118)	1	1	0	22	22	0	4	4	0	
The effect on (MS,		2	2	0	14	14	0	3	3	0	
Ax+To) group is not	brittle (37)	0	-1	0	1/	1/	0	4	4	0	
so propouncod	brittle, nMS(35)	-1	-1	0	1/	1/	0	4	4	0	
so pronounceu.	brittle, nVIS, IP (29)	-2	-2	0	9	9	0	2	2	0	
Unpublished yet	extra-ductile (18)	2	2	0	12	12	0	3	3	0	
	extra-ductile, nIVIS, IP (16)	3	3	0	12	12	0	3	3	U	

PCr in finite life estimation

Low-cycle fatigue (<50000 cycles)

- commercially used
 methods have bigger
 scatter there than PCr
- Dang Van method shows another peak around ΔFI=-8%

Only unnotched specimens evaluated

Multiaxial Methods for Limited Lifetime

Socie et al.

Brown – Wang v. '93

- Shear strain decisive
- The normal strain range present in the shear strain cycle is derived
- Originally MSSR criterion
- Allowed MD in PragTic
- Mean stress effect
 enabled (modification of the Basquin formula)
- Material parameter S set from t₋₁, f₋₁ values (but authors prefer setting by fit to experiments)

Results of W&B Criterion

MSSR versions

- non-conservative for the S derived from fatigue limits
- large scatter for S fitted to mean LLR 0

MD versions

- better scatter (KPL method wins)
- obvious trend from conservative prediction in HCF to non-conservative prediction in LCF visible even here