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Strength of Materials

A discipline that deals with stiffness and strength of parts of machines or structures
and with the causes of their failure due to external forces.

The external forces acting on the machine part cause the rise of the internal forces
called stress o, and at the same time cause the deformation of the component
called strain €

In some simple components of machine or structure, strain and strain can be
calculated based on simplistic intuitive assumptions about the distribution of internal
forces and knowledge of the behavior of structural materials determined by basic
material tests.

In our short course we will deal mainly with the calculation of stress and strain in
the long slim rods strained by tension, bending, torsion and their combinations. The
rods are components widely used in the construction of machines and structures
(shafts, beams, bars, etc.).

We will also talk about multi-axis stresses that arise in more complex components.
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Normal stress and Hooke’s law 3 F

Long slim bars (I >>@d) strained by pulling forces

+ the assumption that the tension is evenly distributed across the cross-
section of the rod (it is constant in the cross-section) - applies only "at a
sufficient distance" from the external acting forces and from the shape
changes (shoulder, recess, etc.)

« for small deformations the strain is defined as the ratio of the length
increment of the rod to its original length

« for the linear part of the tensile diagram, the direct proportionality between
tension and strain applies - Hooke's law

_F _I=1, _ Al
g=—, &= =
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Priklad

Determine stresses in cross-sections 1 -1;
2 -2; 3— 3 for a barloaded by the F-axial.

g,/0,/0,=12,7/35,3/14IMPa

A :—1I1+%I2+%I3:O,473nm

F Determine the bar extension. (F = 10° N; d, =
100 mm; d, = 60 mm; d; = 30 mm,
l,=1,=1,=500mm, E=200000 MPa)

Determine the internal forces and stresses in

O-BC

N,/ Ny =-30/ - 70kN
O/ On = 42,4/ =35, MPa
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MK mm ™ =50 mm
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the pressure-loaded bar, determine its

= lzc =—0,107mm
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Statically indeterminate cases - tension

Ry =i — P _ r, Therodis builtin the rigid walls at the ends A and B (the_
: | length of the rod can not change due the load AL = 0), given
ije=— 3 >»—— b
: 1 P = 10kN, dd = 20mm, a = 200mm, b = 350mm,

E = 200000 MPa. ?Stress

Ry 4——':Lr R1 The load force P is decomposed into parts AC and CB in
- proportion to their stiffness. Equilibr.condition : R1 + R2 = P,

B
R? > I_ R elongation of the AC part must be the same as shortening
| - part of CB:

Ra_ RDb
ES ES

AAC = ‘ACB‘ -

=R :ERZ,JAC =20,MPa g, = - 11,61Pa
a

The rod is built in the rigid walls at the ends A and B (the
length of the rod can not change due the load AL = 0),
- P. b B o the extension of the rod due to the forces P1 and P2

e " > must be the same as the reduction of length due to the
reaction RD:

1A B C D RD

]_Lﬁ_]ﬂL:O: P2b+(Pl+P2)a_ R, (a+b+c) S0oR = Ra+PR,(a+hb)
P P2 ES ES ES (a+b+c)

O g :(P1+P2_RD)/S’ Ogc :(PZ_RD)/S’ Ocp :_RD/S'
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Statically indeterminate cases - tension

The solid rod 1 and the tube 2 are
connected by rigid faces and loaded with
force F. A portion of the force F1
transmits the rod and the tube transmits
a portion of the force F2. Condition of
equilibrium: F;+F,=F

The shortening of both parts must be the
same: AL,= AL,
FiL /1 (E;Sy)=F,L 7 (ESSy)

E=Young modulus
S,,S,=cross-sections of rod and tube




TECHNICKA UNIVERZITA V LIBERCI 2018

Fakulta strojni |

Buckling of long slender rods

If the pressure force acts on a long, slim strut, it may deviate due to misalignment
or accidental lateral loads. In such cases, the compressive force must not exceed
Euler's critical force F,,;, which depends on the modulus of elasticity of the
material E, on the smallest axial quadratic moment of cross-section J,;,,, on the
reduced length of the rod |4 and on the type of supports A -B.
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Covenanted calculation of stresses in "cut" and "puncture”

*The simple shear theory is used in technical

practice to calculate stresses in rivets, bolts, P

nails, welds, etc. A
* |tis assumed that the shear stress is evenly

distributed across the cross-section P

 The stamp test is based on the assumption
that the pressure is evenly distributed over the

projection of the pin contact surface — =
* For edge weldings of thickness t we check /
P=v=[rda__ ¥ R

the shear stress according to the relationship

T J2
r=— _ a=Y%¢
all 2

te
V=P V=PR2
A
TTT A)H—F\A
veF P +P
: \ i
— 7 = — V=P
P
A + T V=P

: \




Two vertical forces - each 5 kN, act on the
pin B of the structure. At places A, Band C
there are pins with a diameter of 16 mm
Specify the maximum value of the normal
voltage in the AB and BC bars
Determine shear stresses in each pin
Determine the pressures in the punches
for fingerprint control

* Answer

* Normal stresses

* F(AB) =7,33 kN tah, 14,7 MPa
«F(BC) = 8,96 kN tlak; -17,9 Mpa
« Shear stresses/contact pressure
+CepA: 18,2/36,7 MPa
CepB: 24,8/50 MPa

+Cep C: 22,3/44,8 Mpa

TECHNICKA UNIVERZITA V LIBERCI

Fakulta strojni

- 2018

Priklad
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Transverse deformation of a rod loaded by a tensile force
Poisson's number

* The rod loaded by the tension is
extended, but it also changes its lateral
dimensions - it narrows

The transverse proportional strain AD / D brass 0,99 0,365 036
is in absolute value p times smaller than steel 2,00 0,810 0,29
the relative elongation € = Al / |

M is the Poisson number lead 0.16 0,056 044

Young's elastic modulus E and Poisson o
number p are two independent material aluminium 0,71 0,264 0,34
constants of most structural isotropic copper 1,23 0,455 0,35
materials ! platinum 1,70 0,610 0,39

argent 0,79 0,287 0,37
zinc 0,90 0,360 0,25
glass 06az0,7 0,26az0,32 0,2az0,27
FD
lg -— y A - —U—
H ES
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Temperature deformations and stresses

(

:

AL

4

Lu+ AL

-

L
+ AT

LoAT

The rod is loaded with the force F and at the
same time it is heated by AT

g
& =alT, &, :E’ E=E +E&;

S:aAT+i, AL=¢L
ES

If we prevent thermal expansion, a
compressive force and thus a compressive
stress is produced in the rod

AL:0:>£:O:>0'AT—ELS:O:>J:—E0’AT
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Problem

the steel rod in the picture should be loaded
with tensile force.

? the maximum force the rod can transfer
without permanent deformations

? the maximum force that the rod will transmit
without breaking

? the safety force n = 1.5 with respect to the
yield and the elongation of the rod at this force

? rod extension when heating at 20 ° C

? tension in the rod if the thermal elongation is
avoided

Given: E = 196GPa, ok = 220MPa,
430 MPa, a =12 * 10-6 K-1

3 GPt =
Odpovéd: 1,05/2/0,7 MN; 0,75/0, 24 mm; 47MPa

2018
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Stress concentrations around shape changes and

P P o ~ holes

Actual area of cross-section




The fatigue limit of the material is determined

experimentally by an controlled fatigue test - usually a

bending in rotation or cyclical tension.

Stress varies with time according to relationship

o (t)= o,sIn(21Tt/T,)

o,(t) is the amplitude of stress and T, is the

period — cycle time.
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Fatigue limit - cyclic load

It is relatively easy to design components
subjected to static loads (design of a safe load
relative to the yield strength or to the strength).

However, most parts are broken down under
dynamic loads.

If a component is loaded with a cyclically varying
force, it is damaged by material fatigue - the part
i; wkorking for a long time and is suddenly

roken.

Fatigue is caused by the formation and growth
of cracks in the material due to cyclic loading.

The breach occurs when the cracks become
critical.
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Fatigue limit

You need to know how long a part under the
cyclical load will endure

Experiments show that the material breaks down
after a certain number of Nf cycles.

The number of cycles depends on the stress
amplitude oa.

The relationship between ga and N expresses the
so-called "S-N curve" of the material.

At high stress, the material breaks rapidly -
between 1 and 1000 cycles

At a lower stress in the material, it can withstand
more than 10,000 to 10,000,000 cycles

Some materials have a fatigue limit

- if the stress amplitude is lower than the fatigue
limit, the component will not break through the
"infinite" number of cycles

The fatigue limit is usually defined as the
amplitude of the stress at which the material
endures more than108 load cycles
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Fatigue limit

A simple rule states that for steel with a
tensile strength less than 1000 MPa, the
fatigue limit is approximately 45-50% when
the surface of the test specimen is smooth
and polished (pink curve).

The graph labeled "Notched" shows a
dramatic reduction in fatigue load due to the
stress concentration at the point of sudden
shape change (recesses, grooves, sharp
shoulders, and transitions)

The surface of the component has a primary
influence on the fatigue limit (surface
cracks). It is evident from the "Corroded"
blue curve.

Fatigue cracks usually run out of existing
surface cracks.




TECHNICKA UNIVERZITA V LIBERCI 2018

Thin ring loaded by pressure

A thin ring whose thickness h = 5mm is much
smaller than the radius R = 60mm (at least 10x)
Is loaded with radial pressure p = 6MPa. The ring
width is b = 10mm. We determine the tension in
R the ring and its expansion AR.

E=2*105 Mpa.

We divide the ring with the imaginary section by
the symmetry plane in two parts. We assume that
the normal circumferential stress in the imaginary
section is evenly distributed (it is constant). From

the equilibrium condition to the axis direction we
have:

"0, 2bh = ph2R= 0, = p%:w:t =J_|§

o =72MPa, AR=0,0216m AO _2m(R+AR)-27R AR
g —_ j— ==
0 271R

2
~ar=PR
E h
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Torsion of thin-walled tubes

A long thin wall tube of diameter D = 2R and wall
thickness t is stressed by the torque M acting in the
plane of the cross section around the pipe axis. The
pipe is twisted and the shear stress occurs in the cross
section. Because the tube is thin, we can predict that
the shear stress is constant. The ends of the tube are
rotated with respect to the angle 6.

M =2nRtr, W, = 21R4, r=M
Wk
9 1.9'_ 79:1 y:L’ G:L
R’ G 2(1+ )
ML o
G2R% P

I = shear stress,W, = modulus of cross-section intorsighs  andléwist, y=shear strain
J = 6/L,G=modulus elasticity in sheal, = quadratic polamment of cross-section
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cireular crosssectw, =75 3 =72° Torsion of shafts - example

16 * 32
7T(D4 _ d4) 71D° q 4
Ringc-sJ =——— W, = =

J P 32 Y 16 ( Dj |
The shear stress in the full cross section is not constant but changes _ ¢ i
linearly depending on the radius. It is largest at the outer edge of the \ oA
Cross section. M S | S|

7(r)=—%r

Example: J p

The two shafts transmit torque by gears B and C. The torque T
applied at point D is T = 900 Nm. Determine the maximum 1
shear stresses in the shafts and the angle of twist between the
ends C and D. The modulus of shear is G=8*10*“MPa

: : T
Maximum shear stress in C-D;; =——=  36/Pa

Angle of twist C-D:4., = e - 0,01dad

1100
Stress in shaft A-Br,, = W64 = 40M\8Pa

kAB
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Statically indeterminate torsion - example

b - The rod is loaded with a torque T = 1 kNm at the
C point and is built in at both ends so that the
cross sections A and B can not rotate with

respect to each other 8,5 = 0. What is the stress
in each part of the rod. Given: a = b = 250mm,
dl =25mm, d2 = 40mm, G = 8 * 10*MPa.
Moment T is divided into both parts of the rod -

i

Ts TAa_TBb b, _b[dlj“

the stiffer part of the rod will carry most of the
torque. The equilibrium condition T=TA+ TB
applies, at the same time the cross section C
must be equal for both the left and right bars:
6CA=06CB

GJ, GJ, aldy = ald,
M, —0132<Nmr = 4:B/|Pa M. = 0,868\m 7, = @4Pa

] ]
£ N
(] ] ]
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Compact wound cylindrical springs

The spring diameter is D, the wire diameter d, the number of threads is n, the
shear modulus is G. The wire of spring is loaded by torque M,=F*D/2, maximum
shear stress in cross-section of wire:

L

=

_ —
OO

,ﬂh
\

[

—

Priklad:

D D
= " 2 = " 2 compressios = 8FnD*
max Wk ﬂd3 ! d4
16

Determine the maximum shear stress and the elongation of the helical
spring. F=1,1 kN, D=200mm,d=20mm, n=20, G=8,4*10* Mpa

Ans.: 80,1MPa, 104,8mm
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Stress in beams in bending

When the beam is bend, we assume that the
cross-sections of the beam do not deplanate =
they remain plane and they only incline.
Bernoulli's hypothesis: There is a neutral axis in
the bent bar, which does not extend or shorten
and the cross-sections after deformation remain
perpendicular to it. The neutral axis (NA)
passes through the centroid of the cross
section. Fibers below and above NA are either
elongated or shortened in course of the beam
deformation, their strain is:

_AB-AB_(p-2)do-pdd _ _z_ __ _ .z

AB pdd Jo, Jo,
1_M M M
curvature.—=—=>=>0=-—"2 ,0,,, = —
p EJ, J, W,
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Cross-sectional values

Quadratic moments of cross-sectional area and modules in torsion or
bending, radii of inertia, etc. of commonly used cross-sectional
shapes are in the tables.

Let's just say two of them:

b

Rectangular area.
y 3 2
= bh W. = m

_b*h b*h
J,=——, W,
127 Y 6

’ JZ__’ \/VOZ .
12 6

Circular area:

! :ﬂd4 ﬂd4 :EB —ndB

Z J,=3,+d, =W, W, =
64 32 32 16

N,
N y
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Built in beams

‘y
/ |

| :
Beam built in at the left end is loaded by single M1 w
force at the other end @ g
Reaction
R,=F ¢
M, = -F L (maximum bending moment) i
Shear force V= const
Inner bending moment is linear v *
Maximum deflection at x = L X
Ymax = (F LB E 1)

i

/ X
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Built in beam

‘y
\ T
W

Beam built in at the left end is loaded d @ YYYYVYI VYT Y VYY y
by uniformly distributed load w [N/m]
Reactions A
Ri=wlL
M, = -(w L2)/2 R

Maximum deflection at x = L
= (w L#) /(8EI) i

ymax

(maximum bending moment)
Shear force V is linear Y \
Moment is a parabola of 2" degree. X
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Built in beam

Beam built in at the left end is loaded by
single moment M at the other end

Reactions

R, =0

M, = Mg (maximum bending moment)
Shear force V=10

Moment is const W
Maximum deflection at x =L

Ve = -(Mg L2) / (2E I




Beam on two supports is loaded by
A single force F in the middle
Reactions R;=R,=F/2

Maximum bending moment is in the
middle under the loading force
Mg-FL/4

Shear force is constant V=F/2 in the
first part of beam and V=-F/2 in the
second part

Moment is linear function of x
Maximum deflrction at x = L/2
=(F L3)/(48 E )

ymax
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Simply s‘upported beams




Beam on two simple support is loaded by
a single force F

ReactonsR,=Fb/L,R,=Fa/L
Max bending moment is under the force F
Mg=Fab/L

Shear force V is constant V=R, in the
firstpart and V=-R, in the second part
of beam

Moment is a linear function of x
The deflection in the point x = L/2
y(L/2) = (F aL?)[3/4-(a/lL)?]/(12E 1)

R1
W
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Simply supported beam

F

A‘Vr?f;é

A\vﬂ




The simply supported beam is loaded by a
single bendin moment Mg

Reactions R;=-R,=Mg/L

Internal bending moment changes in the point
B, it is different from right and left

M, =Mga /L, M, =-Mgb/L

Shear force V is constant V=R,

Moment is linear function of x
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Simply supported beam




The simply supported beam is loaded
symmetrically by the two forces F

Reactions R;=R,=F
Maximum bending moment is in the middle
of beam M_..=F a

Shear force V is constant V=F in the first
part of beam and V=-F in the second part. It
iS zero in the middle of beam.

Moment is the linear function of x
Maximum deflection in x = L/2
Ymax = (F ) (4@%-3L2) (24 E )

N TECHNICKA UNIVERZITAV LIBERCI 2018

Simply supported beam
,F
A ?L Fv{] [l

~— '
) %m

R1
W
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Simply supported beam with an overhanging end
¥

The beam on the two supports with the H
overhang is loaded with simple force F B

Reations R, =-Fa/L,R,=F(L+a)/L A
Max bending moment is in the point B

Mg = Myax=-F @

Shear force V is constant V=- R, in the first \
part and V=F in the second part of beam v
Moment is athe linear function of x
Maximum deflection at point C

Vo, = Ye=FalL(1+alL)I(3EI)
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Plain stress- Thin-walled pressure vessel

In addition to the circumferential stress (see thin-walled ring) there is the
axial stress which is constant in the thickness of the wall and is
determined by the condition of the equilibrium of the bottom separated

by an imaginary section :

g, = p%, o,2nRh=prR® = 0, =0,/ 2

Strain in circumferential and axial direction from Hooke’s law:

&

1 1
:E(Ut _/uo-a)’ga :E(Ja_luo-t)’AR:gtR
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Thin tube loaded in tension and torsion

[——an— R

E__'_ Ox
_V

LR ——— |

The plain stress - a combination of normal tensile stress and shear stress
Strength is characterized by an equivalent stress:

_P_ P M, _ M,
g, =—= Ty ==,
S 27Rh W, 27R’h

— 2 2
Oy, —\/JX +3r,
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Stresses in a shaft

« Maximal bending moment in point S

* bend Q L
«  Constant twist moment
* My~ QR

* Combination of normal and shear stresses:

_QL_ QL _QR_ QR
0-0 3 Tk - - 3 )
W, md®/32" % w, md®/16

— 2 2
Oy, = \/00 +31,
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Recommended

« T.E. Pilpot, Mechanics of materials, Mecmovie http://web.mst.edu/~mecmovie/

« MATHalino.com http://www.mathalino.com/reviewer/mechanics-and-strength-of-materials/mechanics-
and-strength-of-materials
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