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Strength of Materials

• A discipline that deals with stiffness and strength of parts of machines or structures 
and with the causes of their failure due to external forces.

• The external forces acting on the machine part cause the rise of the internal forces 
called stress σ, and at the same time cause the deformation of the component 
called strain ε

• In some simple components of machine or structure, strain and strain can be 
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• In some simple components of machine or structure, strain and strain can be 
calculated based on simplistic intuitive assumptions about the distribution of internal 
forces and knowledge of the behavior of structural materials determined  by basic 
material tests.

• In our short course we will deal mainly with the calculation of stress and strain in 
the long slim rods strained by tension, bending, torsion and their combinations. The 
rods are components widely used in the construction of machines and structures 
(shafts, beams, bars, etc.).

• We will also talk about multi-axis stresses that arise in more complex components.
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Normal stress and Hooke’s law
Long slim bars (l ˃˃Ød) strained by pulling forces

• the assumption that the tension is evenly distributed across the cross-
section of the rod (it is constant in the cross-section) - applies only "at a 
sufficient distance" from the external acting  forces and from the shape 
changes (shoulder, recess, etc.)

• for small deformations the strain is defined as the ratio of the length 
increment of the rod to its original length

• for the linear part of the tensile diagram, the direct proportionality between 
tension and strain applies - Hooke's law

0

0 0
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F l l l

E
A l l

σ ε σ ε− ∆= = = =

= Young's modulus of elasticityE =
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Příklad
Determine stresses in cross-sections 1 -1; 
2 -2; 3 – 3 for a  bar loaded by the F-axial. 
Determine the bar extension. (F = 105 N; d1 = 
100 mm; d2 = 60 mm; d3 = 30 mm, 
l1=l2=l3=500mm, E=200000 MPa)

1σ 2σ 3 12,7σ = 35,3

31 2

141

0,473

MPa

l l l l mm
σσ σ∆ = + + =
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31 2
1 2 3 0,473l l l l mm

E E E

σσ σ∆ = + + =

Determine the internal forces and stresses in 
the pressure-loaded bar, determine its 
shortening. E=200000Mpa

ABN 30BCN = − 70

AB

kN

σ
−

42,4ACσ = − 35,7

0,107BCAB
AB BC

MPa

l l l mm
E E

σσ
−

∆ = + = −
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Statically indeterminate cases - tension
The rod is built in the rigid walls at the ends A and B (the 
length of the rod can not change due the load ΔL = 0), given 
P = 10kN, Ød = 20mm, a = 200mm, b = 350mm, 
E = 200000 MPa. ?Stress
The load force P is decomposed into parts AC and CB in 
proportion to their stiffness. Equilibr.condition : R1 + R2 = P, 
elongation of the AC part must be the same as shortening 
part of CB:
R a R b b σ σ∆ = ∆  =  = = = −

5

________________________________________________________________

1 2
1 2, 20,3 , 11,6 .AC CB AC CB

R a R b b
R R MPa MPa

ES ES a
σ σ∆ = ∆  =  = = = −

The rod is built in the rigid walls at the ends A and B (the 
length of the rod can not change due the load ΔL = 0),
the extension of the rod due to the forces P1 and P2 
must be the same as the reduction  of length due to the 
reaction RD:

( ) ( ) ( )
( )

( ) ( )

1 2 1 22

1 2 2

0 0

, , .

D
D

AB D BC D CD D

P P a R a b c Pa P a bP b
L R

ES ES ES a b c

P P R S P R S R Sσ σ σ

+ + + + +
∆ =  + − =  =

+ +

= + − = − = −
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Statically indeterminate cases - tension

The solid rod 1 and the tube 2 are 
connected by rigid faces and loaded with 
force F. A portion of the force F1 
transmits the rod and the tube transmits 
a portion of the force F2. Condition of 
equilibrium: F1+F2=F

6

1 2

The shortening of both parts must be the 
same: ΔL1= ΔL2

F1L / (E1S1)=F2L / (E2S2)

E=Young modulus
S1,S2=cross-sections of rod and tube
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Buckling of long slender rods

If the pressure force acts on a long, slim strut, it may deviate due to misalignment 
or accidental lateral loads. In such cases, the compressive force must not exceed 
Euler's critical force Fkrit, which depends on the modulus of elasticity of the 
material E, on the smallest axial quadratic moment of cross-section Jmin, on the 
reduced length of the rod lred and on the type of supports A –B.

2
min

2
, , 0.5, 0.7, 1, 2krit red k A B C D E F

EJ
F l n l n n n n n n

l

π= = = = = = = =
2krit red k A B C D E F
redl
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Covenanted calculation of stresses in "cut" and "puncture"

•The simple shear theory is used in technical 
practice to calculate stresses in rivets, bolts, 
nails, welds, etc.

• It is assumed that the shear stress is evenly 
distributed across the cross-section

• The stamp test is based on the assumption 
that the pressure is evenly distributed over the 
projection of the pin contact surface

• For edge weldings of thickness t we check 

V

A
τ =• For edge weldings of thickness t we check 

the shear stress according to the relationship A

b
b

P

A
σ =

___________________________________

2
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Příklad

Two vertical forces - each 5 kN, act on the 
pin B of the structure. At places A, B and C 
there are pins with a diameter of 16 mm
Specify the maximum value of the normal 

voltage in the AB and BC bars
Determine shear stresses in each pin
Determine the pressures in the punches 

for fingerprint control

• Answer

• Normal stresses

• F(AB) = 7,33 kN tah, 14,7 MPa

• F(BC) = 8,96 kN tlak; -17,9 Mpa

• Shear stresses/contact pressure

• Čep A :  18,2 / 36,7 MPa

• Čep B :  24,8 / 50 MPa

• Čep C :  22,3 / 44,8 Mpa
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Transverse deformation of a rod loaded by a tensile force 

Poisson's number
• The rod loaded by the tension is 
extended, but it also changes its lateral 
dimensions - it narrows
The transverse proportional strain ΔD / D 

is in absolute value μ times smaller than 
the relative elongation ε = Δl / l
μ is the Poisson number
Young's elastic modulus E and Poisson 

number μ are two independent material 

látka
E*10-5

[MPa]

G*10-5

[MPa]
µ

brass 0,99 0,365 0,36

steel 2,00 0,810 0,29

lead 0,16 0,056 0,44

aluminium 0,71 0,264 0,34

10

number μ are two independent material 
constants of most structural isotropic 
materials

2

, , , , , ,
4

l D F D F FD
S D

l D E S ES ES

σ πε µε ε σ ε µ∆ ∆= = − = = = = ∆ = −

aluminium 0,71 0,264 0,34

copper 1,23 0,455 0,35

platinum 1,70 0,610 0,39

argent 0,79 0,287 0,37

zinc 0,90 0,360 0,25

glass 0,6 až 0,7 0,26 až 0,32 0,2 až 0,27
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Temperature deformations and stresses

, ,

,

T TT
E

F
T L L

ES

σ σ
σε α ε ε ε ε

ε α ε

= ∆ = = +

= ∆ + ∆ =

The rod is loaded with the force F and at the 
same time it is heated by ΔT

11

ES

If we prevent thermal expansion, a 
compressive force and thus a compressive  
stress is produced in the rod

0 0 0
F

L T E T
ES

ε α σ α∆ =  =  ∆ − =  = − ∆
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Problem

•the steel rod in the picture should be loaded 
with tensile force.

? the maximum force the rod can transfer 
without permanent deformations

? the maximum force that the rod will transmit 
without breaking

12

without breaking

? the safety force n = 1.5 with respect to the 
yield and the elongation of the rod at this force

? rod extension when heating at 20 ° C

? tension in the rod if the thermal elongation is 
avoided

Given: E = 196GPa, σk = 220MPa,
σpt = 430 MPa, α = 12 * 10-6 K-1

Odpověď: 1,05/2/0,7 MN; 0,75/0,24 mm; 47MPa
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Stress concentrations around shape changes and 

holes

F
max 3

F

S
σ ≐
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Fatigue limit - cyclic load

• It is relatively easy to design components 
subjected to static loads (design of a safe load 
relative to the yield strength or to the strength).

• However, most parts are broken down under 
dynamic loads.

• If a component is loaded with a cyclically varying 
force, it is damaged by material fatigue - the part force, it is damaged by material fatigue - the part 
is working for a long time and is suddenly 
broken.

• Fatigue is caused by the formation and growth 
of cracks in the material due to cyclic loading.

• The breach occurs when the cracks become 
critical.

• The fatigue limit of the material is determined 
experimentally by an controlled fatigue test - usually a 
bending in rotation or cyclical tension.

Stress varies with time according to relationship

• σa(t)= σ0sin(2πt/T0)

• σa(t) is the amplitude of stress and T0 is the 
period – cycle time.



2018

• You need to know how long a part under the 
cyclical load will endure

• Experiments show that the material breaks down 
after a certain number of Nf cycles.

• The number of cycles depends on the stress 
amplitude σa. 

• The relationship between σa and N expresses the 
so-called "S-N curve" of the material.

• At high stress, the material breaks rapidly -

Fatigue limit

• At high stress, the material breaks rapidly -
between 1 and 1000 cycles

• At a lower stress in the material, it can withstand 
more than 10,000 to 10,000,000 cycles

• Some materials have a fatigue limit 
- if the stress amplitude is lower than the fatigue 
limit, the component will not break through the 
"infinite" number of cycles

• The fatigue limit is usually defined as the 
amplitude of the stress at which the material 
endures more than108 load cycles
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Fatigue limit

• A simple rule states that for steel with a 
tensile strength less than 1000 MPa, the 
fatigue limit is approximately 45-50% when 
the surface of the test specimen is smooth 
and polished (pink curve).

• The graph labeled "Notched" shows a 
dramatic reduction in fatigue load due to the 
stress concentration at the point of sudden stress concentration at the point of sudden 
shape change (recesses, grooves, sharp 
shoulders, and transitions)

• The surface of the component has a primary 
influence on the fatigue limit (surface 
cracks). It is evident from the "Corroded" 
blue curve. “

• Fatigue cracks usually run out of existing 
surface cracks.
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Thin ring loaded by pressure

A thin ring whose thickness h = 5mm is much 
smaller than the radius R = 60mm (at least 10x) 
is loaded with radial pressure p = 6MPa. The ring 
width is b = 10mm. We determine the tension in 
the ring and its expansion ΔR. 
E = 2 * 105 Mpa.
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E = 2 * 105 Mpa.
We divide the ring with the imaginary section by 
the symmetry plane in two parts. We assume that 
the normal circumferential stress in the imaginary 
section is evenly distributed (it is constant). From 
the equilibrium condition to the axis direction we 
have:
:

( ) 2

2 2

2 2

2

t
t t t

t

R
bh pb R p

h E
R R RO R p R

R
O R R E h

σσ σ ε

π π
ε

π

=  =  =

+ ∆ −∆ ∆= = =  ∆ =
72 , 0,0216t MPa R mmσ = ∆ =
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Torsion of thin-walled tubes

A long thin wall tube of diameter D = 2R and wall 
thickness t is stressed by the torque M acting in the 
plane of the cross section around the pipe axis. The 
pipe is twisted and the shear stress occurs in the cross 
section. Because the tube is thin, we can predict that 
the shear stress is constant. The ends of the tube are 
rotated with respect to the angle θ.

18

( )

2 2

3
3

2 , 2 ,
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, 2
2

k
k

p

M
M R t W R t

W

E
L G

R G

ML
J R t
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π τ π τ

γ τθ ϑ ϑ γ
µ

θ π
π
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= = = =
+
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, modulusof cross-section in torsion, angleof twist,  =shear strain, 

/L,G=modulus elasticity in shear, quadratic polar moment of cross-section
k

p

shear stress W

J

τ θ γ
ϑ θ

= = =
= =
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Torsion of shafts - example
( )

3 4

4 4 43

Circular cross-sect.: , .
16 32

Ring c-s: , 1 .
32 16

k p

p k

d d
W J

D d D d
J W

D

π π

π π

= =

−   = = −     

The shear stress in the full cross section is not constant but changes 
linearly depending on the radius. It is largest at the outer edge of the 
cross section.

Example:
The two shafts transmit torque by gears B and C. The torque T 

( ) k

p

M
r r

J
τ =

The two shafts transmit torque by gears B and C. The torque T 
applied at point D is T = 900 Nm. Determine the maximum 
shear stresses in the shafts and the angle of twist between the 
ends C and D. The modulus of shear is G=8*104MPa

Maximum shear stress in C-D: 36,7

Angle of twist C-D: 0,011

100
64Stress in shaft A-B: 40,8

CD
kCD

CD
CD

pCD

AB
kAB

T
MPa

W

TL
rad

GJ

T
MPa

W

τ

θ

τ

= =

= =

= =
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Statically indeterminate torsion - example

The rod is loaded with a torque T = 1 kNm at the 
C point and is built in at both ends so that the 
cross sections A and B can not rotate with 
respect to each other θAB = 0. What is the stress 
in each part of the rod. Given: a = b = 250mm, 
d1 = 25mm, d2 = 40mm, G = 8 * 104MPa.
Moment T is divided into both parts of the rod -

20

Moment T is divided into both parts of the rod -
the stiffer part of the rod will carry most of the 
torque. The equilibrium condition T = TA + TB 
applies, at the same time the cross section C 
must be equal for both the left and right bars: 
θCA = θCB

4

1

2

0,132 , 43 , 0,868 , 69 .

pAA B
A B B

pA pB pB

A A B B

JT a T b db b
T T T

GJ GJ a J a d

M kNm MPa M kNm MPaτ τ

 
=  = =  

 

= = = =
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Compact wound cylindrical springs

The spring diameter is D, the wire diameter d, the number of threads is n, the 
shear modulus is G. The wire of spring is loaded by torque Mk=F*D/2, maximum
shear stress in cross-section of wire:

3

max 3 4

82 2 ,  compression .

D D
F F FnD

s
dW Gd

τ
π

= = =

21

max 3 4

16
k dW Gdπ

Příklad: 
Determine the maximum shear stress and the elongation of the helical 
spring. F=1,1 kN, D=200mm,d=20mm, n=20, G=8,4*104 Mpa

Ans.: 80,1MPa, 104,8mm



2018

Stress in beams in bending

When the beam is bend, we assume that the 
cross-sections of the beam do not deplanate = 
they remain plane and they only incline. 
Bernoulli's hypothesis: There is a neutral axis in 
the bent bar, which does not extend or shorten 
and the cross-sections after deformation remain 
perpendicular to it. The neutral axis (NA) 
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perpendicular to it. The neutral axis (NA) 
passes through the centroid of the cross 
section. Fibers below and above NA are either 
elongated or shortened in course of the beam 
deformation, their strain is:

( )' '

max

1
curvature: ,o o o

y y o

z d dA B AB z z
E E

AB d

M M M
z

EJ J W

ρ θ ρ θ
ε σ ε

ρ θ ρ ρ

σ σ
ρ

− −−= = = −  = = −

=  = − =
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Cross-sectional values

• Quadratic moments of cross-sectional area and modules in torsion or 
bending, radii of inertia, etc. of commonly used cross-sectional 
shapes are in the tables.
Let's just say two of them:

23

3 2 3 2

4 4 3 3

Rectangular area: 

, , , .
12 6 12 6

Circular area:

, , , .
64 32 32 16

y oy z oz

y z p y z o k

bh bh b h b h
J W J W

d d d d
J J J J J W W

π π π π

= = = =

= = = + = = =
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• Beam built in at the left end is loaded by single 
force at the other end

• Reaction 

• R1 = F 

• M = -F L (maximum bending moment)

Built in beams

• M1 = -F L (maximum bending moment)

• Shear force V= const

• Inner bending moment is linear

• Maximum deflection at x = L 

• ymax = (F L3)/(3 E I) 
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Built in beam

• Beam built in at the left end is loaded 
by  uniformly distributed load w [N/m]

• Reactions

• R1 = w L 

• M = -(w L2)/2 • M1 = -(w L2)/2 

• (maximum bending moment)

• Shear force V is linear

• Moment is a parabola of 2nd degree.

• Maximum deflection at x = L 

• ymax = (w L4) /(8EI)
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Built in beam

• Beam built in at the left end is loaded by 
single moment M at the other end

• Reactions

• R1 =0

• M = M (maximum bending moment)• M1 = MB (maximum bending moment)

• Shear force V= 0

• Moment is const

• Maximum deflection at x = L 

• ymax = -(MB L2) / (2 E I) 
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Simply supported beams

• Beam on two supports is loaded by 

• A single force F in the middle

• Reactions R1 = R2 = F / 2 

• Maximum bending moment is in the 
middle under the loading force
MB= F L / 4

• Shear force is constant V=F/2 in the 
first part of beam and V=-F/2 in the first part of beam and V=-F/2 in the 
second part

• Moment is linear function of x

• Maximum deflrction at x = L/2

• ymax = (F L3)/(48 E I) 
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Simply supported beam

• Beam on two simple support is loaded by 
a single force F

• Reactions R1 = F b / L, R2 = F a / L 

• Max bending moment is under the force F

• MB = F a b / L 

• Shear force V is constant V= R1 in the 
first part  and V= - R2 in the second part 
of beam

• Moment is a linear function of x

• The deflection in the point x = L/2

• y(L/2) = (F aL2)[3/4-(a/L)2]/(12E I)
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Simply supported beam

• The simply supported beam is loaded by a 
single bendin moment MB

• Reactions R1 = -R2 = MB / L 

• Internal bending moment changes in the point 
B, it is different from right and left

• ML = MBa / L , MP = -MBb/ L • ML = MBa / L , MP = -MBb/ L 

• Shear force V is constant V= R1

• Moment is linear function of x
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Simply supported beam

• The simply supported beam is loaded 
symmetrically by the two forces F

• Reactions R1 = R2 = F 

• Maximum bending moment is in the middle 
of beam M =F aof beam Mmax=F a

• Shear force V is constant V=F in the first 
part of beam and V=-F in the second part. It 
is zero in the middle of beam.

• Moment is the linear function of x

• Maximum deflection in x = L/2

• ymax = (F a) (4 a2 - 3 L2) /(24 E I)
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Simply supported beam with an overhanging end

• The beam on the two supports with the 
overhang is loaded with simple force F

• Reations R1 = -F a / L , R2 = F (L + a) / L 

• Max bending moment is in the point B 
M = M = - F aMB = MMAX= - F a

• Shear force V is constant V=- R1 in the first 
part and V=F in the second part of beam

• Moment is athe linear function of x

• Maximum deflection at point C

• ymax = yC=Fa2L(1+a/L)/(3EI)
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Plain stress- Thin-walled pressure vessel

In addition to the circumferential stress (see thin-walled ring) there is the In addition to the circumferential stress (see thin-walled ring) there is the 
axial stress which is constant in the thickness of the wall and is 
determined by the condition of the equilibrium of the bottom separated 
by an imaginary section :

2, 2 2t a a t

R
p Rh p R

h
σ σ π π σ σ= =  =

Strain in circumferential and axial direction from Hooke’s law: 

( ) ( )1 1
, ,t t a a a t tR R

E E
ε σ µσ ε σ µσ ε= − = − ∆ =
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Thin tube loaded in tension and torsion

33

2 2
2

, , 3
2 2

k k
x xy ekv x xy

k

M MP P

S Rh W R h
σ τ σ σ τ

π π
= = = = = +

The plain stress - a combination of normal tensile stress and shear stress 
Strength is characterized by an equivalent stress:
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Stresses in a shaft

• Maximal bending moment in point S

• Mbend = Q L

• Constant twist moment

• Mtwist= Q R

• Combination of normal and shear stresses:

3 3

2 2

, ,
32 16

3

o k
o k

ekv o k

QL QL QR QR

W d W d
σ τ

π π

σ σ τ

= = = =

= +
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Recommended

• T.E. Pilpot, Mechanics of materials, Mecmovie http://web.mst.edu/~mecmovie/

• MATHalino.com http://www.mathalino.com/reviewer/mechanics-and-strength-of-materials/mechanics-
and-strength-of-materials
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