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Introduction, basic definitions

• Oscillatory process – alternate increases or decreases of physical

quantities (displacements, velocities, accelerations)

• Oscillatory motion is periodic motion• Oscillatory motion is periodic motion

• Vibration of turbine blades, vibration of machine tools, electrical

oscillation, sound waves, vibration of engines, torsional vibration

of shafts, vibration of automobiles etc.

• Mechanical vibration - mechanisms and machines, buildings, 

bridges, vehicles,  aircrafts – cause mechanical failure

• Harmonic, periodic general motion
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Elastic elements

• Discrete elements (masses) + 

linear and torsional springslinear and torsional springs

• Continuos structural elements –

beams and plates

• Number of degrees of freedom

(DOF) – minimum number of

coordinates

Single degree of freedom systems

System with infinite number DOF
Two degree of freedom systems



Oscillatory motions

• Periodic motion with

harmonic components

• Harmonic motion

harmonic components

Periodic motion repeating itself The simplest form of periodic motion isPeriodic motion repeating itself

after a certain time interval.

The simplest form of periodic motion is

harmonic motion – sin, cos



Harmonic motion

• Displacement of harmonic motion is given:

( )sinx X tω ϕ= +

• x, x(t) ... displacement  [m]

• X ... amplitude of displacement [m]

• ... phase

• ω ... angular velocity [s-1]

• T ... natural period of oscillation [s]    

( )tω ϕ+

2
T

π
ω

=• T ... natural period of oscillation [s]    

• f ... frequency [s-1], [Hz] - Hertz

• ϕ ... phase angle

T
ω
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• velocity:

• ωX ... amplitude of velocity [ms-1]

( )cos
dx

x X t
dt

ω ω ϕ= = +ɺ

• ωX ... amplitude of velocity [ms ]

• acceleration:  

( )
2

2
2

sin
d x

x X t
dt

ω ω ϕ= = − +ɺɺ

• -ω2X ... amplitude of acceleration [ms-2]



Simple degree of freedom systems

mass, spring, damper, harmonic excitation

( )mx bx kx F t+ + =ɺɺ ɺ
Forcing function –

harmonic excitation

0mx bx kx+ + =ɺɺ ɺDamped free vibration

0mx kx+ =ɺɺUndamped free vibration



Simple degree of freedom systems

( )mx bx kx F t+ + =ɺɺ ɺ

0( ) sinF t F tω=

m ... mass

b ... (viscous) damping  coefficient

k ... stiffness coefficient

F0 ... amlitudes of force

ω  ... frequency of harmonic force

bcr ... critical damping coefficient

ζ ... damping factor

k
... natural (circular) frequency

... frequency ratio

k

m
Ω =

ωη =
Ω



Undamped free vibration
0+ =ɺɺmx kx

Solution of the 2nd order differential equation

Assumed solution

Characteristic equation: 
( ) Ω − Ω= +i t i tx t Ae Be free vibration

( ) tx t Aeλ=

Characteristic equation: 
2 0λ + =m k
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Two arbitrary constants A a B, determined
from initial conditions:

( ) ( )0 00 , 0= =ɺx x x v

( ) ( )i t i tx t i Ae BeΩ − Ω= Ω −ɺ

0x A B= +

( )0v i A B= Ω −
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m
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Damped free vibration
0mx bx kx+ + =ɺɺ ɺ

Solution of linear differential equation of 2nd order:
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Damped free vibration
Overdamped system:  displacement becomes the sum of

two decaying exponentials with initial value of A+B, no 

vibration takes place, the body tends to creep back to the

equilibrium position – APERIODIC MOTION (Fig.1)

1ζ >

Underdamped system: displacement is oscillatory with

diminishing amplitude (Fig.2). Frequency of oscillation is

less than that of the undamped case by the factor .

( ) ( )2 21 1t t
x Ae Be

ζ ζ ζ ζ− + − Ω − − − Ω
= +

21 ζ− Fig. 1
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Damped free vibration – Logarithmic decrement

Natural logarithm of the ratio of any two amplitudes
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Forced vibration, harmonic excitation

0

( )

sin

mx bx kx F t

mx bx kx F tω
+ + =
+ + =
ɺɺ ɺ

ɺɺ ɺ

1. Forced undamped vibration1. Forced undamped vibration

- homogenous solution of equation

- particular solution of equation

Solution of dif. equation with right side → steady state oscillation (response)

Assumed solution in the form of harmonic function:

dif. equation:  

0+ =ɺɺmx kx

( )
1 2

2 2
1 2

sin cos

sin cos

ω ω

ω ω ω ω

= +

= − = − +ɺɺ
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0 sin ω+ =ɺɺmx kx F t

( ) ( )2 2sin cos sinω ω ω ω ω− + − =k m a t k m a t F tdif. equation:  

Comparing of coeficients at function sin a cos on the both side of the equation →  

amplitude a1

( ) ( )1 2 0sin cos sinω ω ω ω ω− + − =k m a t k m a t F t

0
1 22

, 0
ω

= =
−

F
a a

k m



Particular solution:

Forced vibration, harmonic excitation
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Forced vibration

( )0

( )

sin 1

mx bx kx F t

mx bx kx F tω
+ + =
+ + =
ɺɺ ɺ

ɺɺ ɺ
harmonic force

1.                                             homogenous solution0mx bx kx+ + =ɺɺ ɺ1.                                             homogenous solution

2. →   steady-state solution (response)

0mx bx kx+ + =ɺɺ ɺ

( )sin ω ϕ= −x a t

( ) ( )
0 0

2 2 22

1F F
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0 sin ω+ + =ɺɺ ɺmx bx kx F t

( ) ( ) ( )2
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Single degreee of freedom system

Free damped vibration Free undamped vibration Forced damped vibration

Homogenous solution Homogenous solution

( )mx bx kx F t+ + =ɺɺ ɺ0+ + =ɺɺ ɺmx bx kx 0+ =ɺɺmx kx

Homogenous solution Homogenous solution

Initial conditions Initial conditions Amplitude of steady state
oscillation, steady state

response
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Forced vibration - magnification factor and phase angle

( ) phx t x x= +

( ) ( )

( ) ( )
02

2 22

sin
sin 1t F t

x t Ce t
k m b

ζ ω ϕ
ζ γ

ω ω
− Ω  

 
 

−
= − Ω + +

− +

Solution of equation (1):
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Values C a     are derived from initial conditions.
Amplitudes of steady-state oscillation: 

γ

statical deflection of the spring mass
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Transient motion, under resonance 
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Vibration isolation and transmissibility
Machine or engines rigidly attached to a supporting

structure, vibration is transmitted directly to the

support (often undiserable vibration). Disturbing

source must be isolated. Force is trasmitted through

a) ω = const. → η = const. ω >> Ω, η >> 1, 

small damping factor ζ

b) ω ≠ const. → isolation, support with

damping
springs and damper.

damping

ω=η
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Rotating unbalance
Rotating unbalance systems (gears, wheels, 

shafts disks which are not perfectly uniform, 

produce unbalance force which cause 

excessive vibrations. 

m0 ... unbalance mass

e … eccentricity
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Base motion, relative motion
Forced vibration of mechanical systems can be

caused by the support motion (vehicles, 

aircrafts and ships)

harmonic motion 0
ω= i ty y eharmonic motion
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